
#**•*#*___ i f * *

THE PL/1
SUBSET G

REFERENCE GUIDE

PRIME
Computer

IDR 4031

THE PL/T
SUBSETG

REFERENCE GUIDE
IDR4031

This guide documents the operation of the Prime Computer and its
supporting systems and utilities as implemented at Master Disk Revision
Level 17 (Rev. 17) .

PRIME
PRIME Computer, Inc.

500 Old Connecticut Path
Framingham, Massachusetts 01701

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing April 1980

All correspondence on suggested changes to this document should be
directed to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

l i

I D R 4 0 3 1 C O N T E N T S

CONTENTS

PART I INTRODUCTION

1 INTRODUCTION

D e fi n i t i o n s 1 - 1
This Document 1-1
Related Documents 1-2
The PL/I Language 1-3
The PL/I Subset G Language 1-3
The PL1G Language 1-4
Restrictions on PL1G Programs 1-5
Interface to Other Languages 1-6
PL1G and the Editor 1-7
PL1G and Prime Utilities 1-7
The Source Level Debugger 1-8
The PRIMOS Condition-Handling Mechanism 1-9
Conventions Used in this Guide 1-10

PART II THE PL1G LANGUAGE

2 OVERVIEW OF PL1G

Program Text 2-1
Names, Constants, and Punctuation 2-1
Comments 2-4
Text Replacement and Insertion 2-4
Statements • 2-5
Declarations and References 2-8
Procedures 2-9
Block Structure and Scope 2-10
Parameters and Arguments 2-10
Block Activation and Recursion 2-12
Variables and Storage 2-13
Begin Blocks 2-15
Exception Handling 2-15
Input and Output 2-16

3 DATA AND DATA TYPES

Data Types 3-1
Arithmetic Types 3-1
Pictured Data 3-4
Character-String Data 3-7
Bit-String Data 3-8
Pointer Data 3-10
Label Data 3-12
Entry Data 3-14
File Data 3-17
Arrays 3-18

i n April 1980

C O N T E N T S I D R 4 0 3 1

Structures 3-19
Arrays of Structure 3-21

4 STORAGE CLASSES

Storage Classes 4-1
Automatic Storage 4-1
Static Storage 4-2
Based Storage 4-3
Defined Storage 4-5
Parameters 4-6
Storage Sharing 4-8

5 DECLARATIONS AND ATTRIBUTES

Declarat ions 5-1
Label Prefixes 5-1
Declare Statements 5-3
Declaration Defaults 5-5
Attribute Consistency 5-6
Attr ibutes 5-7

6 REFERENCES

Definit ions 6-1
Simple and Subscripted References 6-1
Structure Qualified References 6-2
Pointer Qualified References 6-3
Procedure References 6-3
Built-in Function References 6-4
Variable References 6-4
Reference Resolution 6-5

7 EXPRESSIONS

Definition of Expression 7-1
Arithmetic Expressions 7-3
Relational Expressions 7-6
Bit-String Expressions 7-7
Concatenate Expressions 7-8

8 DATA TYPE CONVERSIONS

In t roduc t ion 8 -1
Arithmetic to Arithmetic Conversion 8-2
Arithmetic to Bit-String Conversion 8-4
Arithmetic to Character-String Conversion 8-5
Bit-String to Arithmetic Conversion 8-6
Bit-String to Character-String Conversion 8-7
Character-String to Arithmetic Conversion 8-7
Character-String to Bit-String Conversion 8-8
Format Controlled Conversion 8-8
Pictured to Arithmetic Conversion 8-13
Pictured to Bit-String Conversion 8-13

April 1980 I V

I D R 4 0 3 1 C O N T E N T S

Pictured to Character-String Conversion 8-14
Conversion to Pictured Data 8-14

9 STATEMENTS

How to Read this Section 9-1

10 BUILT-IN FUNCTIONS

Summary 10-1
Function Descriptions 10-1

PART III PL1G AND THE PRIME SYSTEM

11 IMPLEMENTATION DEFINED FEATURES

Arithmetic Precision 11-1
Maximum Sizes 11-1
Data Size and Alignment 11-2
Input/Output on TTY 11-2
Read and Write on Stream Files 11-3
Variable Length Input Lines 11-3
The Title Option and File Opening 11-3
Listing Control 11-5
Pointer Size Control 11-5
Additional Implementation Defined Features 11-5
Null Built-in Function 11-6
File System Limitation 11-6

12 ADVICE ON THE USE OF PL1G

Purpose of this Section 12-1
E f fi c i e n c y 1 2 - 1
Common Programming Errors 12-2
Programming Style 12-3

13 PL1G USE OF THE CONDITION MECHANISM

Information Structure 13-1

14 USING THE PL1G COMPILER

Int roduct ion 14-1
Invoking the Compiler 14-1
Compiler Error Messages 14-1
End-Of-Compilation Message 14-2
Compiler Options 14-3

v A p r i l 1 9 8 0

C O N T E N T S I D R 4 0 3 1

APPENDICES

A GLOSSARY OF PL1G TERMS A-l

B ABBREVIATIONS B-l

C DATA FORMATS

Overview C-l
Fixed Binary Data C-2
Fixed Decimal Data C-3
Float Binary Data C-4
Float Decimal Data C-5
Picture Data D-6
Character Data D-7
Characater Varying Data C-8
Bit Data C-9
Pointer Data C-10
Label Data C-ll
Entry Data C-l2
File Data C-l3

D STACK FRAME AND FUNCTION RETURN CONVENTIONS

Locations of Returned Functions Values D-l
Stack Frame Format D-l

E ASCII CHARACTER SET

Prime Usage E-l
Keyboard Input E-l
Changing the Significance of Special Characters E-l

F DIFFERENCES BETWEEN FULL PL/I AND PL/I SUBSET G

PL/I Features Supported in PL/I Subset G F-l
PL/I Features Not Supported in PL/I Subset G F-l

A p r i l 1 9 8 0 v i

Part I
Introduction

I D R 4 0 3 1 I N T R O D U C T I O N

SECTION 1

INTRODUCTION

DEFINITIONS

There are several versions of PL/I. The following names are used for
the versions discussed in this guide.

PL/I: A general-purpose high-level programming language, defined
in the American National Standards Institute (ANSI) publication
"ANSI X3.53-1976".

PL/I Subset G: A subset of the full PL/I language. Subset G is
defined in the draft proposed ANSI standard "BSR X3.74" Revision 8.
For convenience, BSR X3.74 will hereafter be referred to as the
ANSI standard for PL/I Subset G, although the process of official
adoption is not yet complete as of Rev. 17.2.

PL1G: Prime's extended version of PL/I Subset G. The PL1G
language conforms fully to BSR X3.74, except as noted below under
Excluded Features of PL1G.

Certain PL/I-specific terms used in this introduction are formally
defined in the glossary in Appendix A.

THIS DOCUMENT

This document is a programmer's guide to the PL/I Subset G language as
implemented on the Prime system. The reader is expected to be familiar
with some high-level language, and with programming in general, but not
necessarily with PL/I or Prime computers. Users who need additional
background in programming techniques or PL/I should consult an
appropriate textbook. Some examples are:

Conway, Richard, and Gries, David, An Introduction to Programming -
A Structured Approach Using PL/I and PL/C, Winthrop Publishers,
Inc .

Hughes, Joan K., PL/I Structured Programming, John Wiley & Sons,
Inc .

Pollack, Seymour V., and Sterling, Theodore C, A Guide to PL/I,
Hall, Rinehart, and Winston.

April 1980

S E C T I O N 1 I D R 4 0 3 1

This document contains the following:

• A general introduction.

• An overview of the PL1G language.

• All the information from ANSI X3.53-1976 and BSR X3.74 which a
programmer needs to program in PL1G. Various details elaborated
in the standards for the sake of completeness, but unlikely ever
to be required in practice, have been omitted to limit this
guide to a reasonable size.

• Complete information on all extensions to and implementation-
defined features of Prime's PL/I Subset G.

• Complete information on the use of the PL1G compiler.

• A glossary of PL/I terms.

• A detailed comparison of PL/I and PL/I Subset G.

• Supplementary information useful in a variety of commonly
encountered programming situations.

RELATED DOCUMENTS

Nearly all the information in The PL/I Subset G Reference Guide (this
guide) relates direct ly to the PL1G language. Li t t le general
information on the Prime computer system is presented here. The
following documents contain the additional information needed to
program in PL1G on the Prime system.

The New User's Guide to Editor and Runoff

The PRIMOS editor is an interactive text-editing utility. It is used
to enter new text into the computer, and to modify material previously
entered. New programs not resident on media such as cards or tape are
usually input to the system at a terminal using the editor.

The New User's Guide to Editor and Runoff contains a complete
description of the editor. It also provides a basic introduction to
the Prime system for those with little or no computer experience, and
describes Runoff, Prime's text-formatting utility.

REV. 0

I D R 4 0 3 1 I N T R O D U C T I O N

The Prime User's Guide

Complete instructions for creating, loading and executing programs in
PL1G or any Prime language, plus extensive additional information on
Prime system utilities for programmers, is found in The Prime User's
Guide. The user's guide and this reference guide are complementary
documents: both are essential to the PL1G programmer.

The user's guide also contains a complete description of all Prime
documents.

The LOAD and SEG Reference Guide

Ordinary loading and execution of programs requires only the
information given in The Prime User's Guide. Those who wish to control
the load process in more detail, or otherwise take advantage of the
full range of Prime loader capabilities, are referred to The LOAD and
SEG Reference Guide.

The PRIMOS Subroutines Reference Guide

Prime offers a large selection of applications-level subroutines and
PRIMOS operating system subroutines which can be called from any point
within a PL1G program. These routines are described in The PRIMOS
Subroutines Reference Guide.

THE PL/I LANGUAGE

PL/I is a comprehensive general-pur pose programming language combining
the best features of several other languages, including FORTRAN, COBOL,
and ALGOL. PL/I provides more and more powerful programming tools and
methods than any other language currently available.

THE PL/I SUBSET G LANGUAGE

Many programming situations exist for which the PL/I language is
appropriate, but which do not require the more advanced, unusual, or
rarely used features of full PL/I. To meet the needs of such
situations, ANSI has extracted from full PL/I a subset language known
as PL/I Subset G.

Subset G was designed by ANSI to have the following properties:

• It is well suited for use in commercial, scientific, and systems
programming application areas.

• It is small enough to achieve widespread implementation yet
large enough to achieve widespread usage.

April 1980

S E C T I O N 1 I D R 4 0 3 1

• It is easier to learn and understand, substantially less
expensive to implement, and utilizes computer resources more
economically than full PL/I.

• Programs written in the subset are more portable than programs
written in the full language.

• Programs written in the subset are less likely to contain
programming errors than programs written in the full language
because the subset is both simpler and less permissive than the
full language.

Differences between Full PL/I and PL/I Subset G

A detailed comparison of full PL/I with PL/I Subset G is found in
Appendix F.

THE PL1G LANGUAGE

PL1G is Prime's version of PL/I Subset G. It differs only minimally
from standard PL/I Subset G. The differences consist of extensions to
and exclusions from the standard language.

PL1G Extensions to PL/I Subset G

Prime has avoided extending PL/I Subset G unnecessarily, since needless
extensions would serve mostly to reduce compatibility between PL1G and
other versions of PL/I. Following is a complete list of all Prime
extensions to PL/I "Subset G.

• %REPLACE statements.

• RANK and BYTE built-in functions. (However, these functions can
be easily expressed in terms of standard built-in functions.)

• READ and WRITE statements operating on stream files.

• Nonstandard properties of the device named TTY.

• Use of an A-format without a field width to read a variable
length input line.

• Use of both upper- and lower-case letters in names. Some
implementations maintain upper- and lower-case letters as
distinct characters, while others require upper-case only.

• Use of the OPTIONS(SHORT) specifier to control space allocation
for pointer variables.

REV. 0

I D R 4 0 3 1 I N T R O D U C T I O N

• Use of %LIST; and %NOLIST; statements to control listing
detail. These are equivalent to the IBM PL/I statements %PRINT;
and %NOPRINT;.

• The -APPEND argument to the TITLE option.

• The characters J and @ may be used in identifiers.

• The DO statement accepts an index variable of any arithmetic
type.

• Unconnected arrays may be passed to *-extent parameters.

• The ONLOC built-in function is provided.

None of these features should be used in any program which may have to
run under some non-Prime version of PL/I.

PL1G Exclusions from PL/I Subset G

During the development of PL1G at Prime, standardization of PL/I Subset
G continued at ANSI. The final revision of BSR3.74, Revision 8,
included a few features which were originally not part of the subset.
These features are not implemented in PL1G as of Revision 17.2.

The excluded features are:

• The assignment "array = scalar" is not allowed.

• The conditions FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, ZERODIVTDE,
and UNDEFINEDFILE are not included.

• The STRING option is not allowed in a GET or PUT statement.

• READ with SET is not allowed.

Implementation-Defined Features of PL1G
The ANSI standard for PL/I Subset G does not specify every detail of
the language. Certain features which are inherently dependent on the
particular computer system used are designated in the standard as
implementation-defined. Each computer manufacturer sets its own
standard for such features.

A general description of each implementation-defined feature is given
in the appropriate section of this guide. Specific details on Prime's
choices for each such feature are contained in Section 11.

PL1G programs which may have to run under a non-Prime version of PL/I
should be written to be minimally dependent on implementation-defined
features.

April 1980

S E C T I O N 1 I D R 4 0 3 1

Where appropriate, the description of an implementation-defined feature
includes a discussion of factors relating to an implementation's choice
for that feature. This information can be used in estimating the
possible impact of an implementation-defined feature on program
t ranspor tab i l i t y. The in fo rmat ion appears w i th each genera l
description and is not reiterated in Section 11.

RESTRICTIONS ON PL1G PROGRAMS

The segmented nature of the Prime virtual memory system imposes a few
restrictions on PL1G programs. None of them is contrary to the ANSI
standard or need interfere with program design.

• The executable code (exclusive of data storage) for a
compilation unit may not occupy more than one segment (128K
bytes). For additional program space, break out procedures and
make them separate compilation units.

• No program may have more than one segment of local static
storage. For additional storage, make some of the data static
external .

• No program unit may have more than one segment of dynamic
storage. Any additional storage must be made static.

• No data item in a static external aggregate may be split across
the boundary between two segments. When laying out a static
external aggregate, use the information on storage formats in
Appendix C to insure compliance with this rule.

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the PL1G compiler can reference or be referenced by modules
produced by the FTN, F77, or COBOL compilers. Certain restrictions
must be observed when a PL1G object module interfaces one compiled from
another language.

• All I/O routines must be written in the same language.

• There must be no conflict of data types for variables being
passed as arguments. For example, FIXED BINARY in PL1G should
be declared as INTEGER in FORTRAN 77. See Appendix C for a
description of PL1G data storage formats.

• Modules compiled in 64V or 321 mode cannot reference or be
referenced by modules compiled in any R mode. Modules in 64V or
321 may reference each other if they are otherwise compatible.

• A PL1G program cannot reference a FORTRAN complex-valued
funct ion.

REV. 0

I D R 4 0 3 1 I N T R O D U C T I O N

• A label passed to a Prime FORTRAN IV (FTN) subroutine as an
alternate-return specifier must identify a statement in the same
block that contains the subroutine call.

A PL1G static external structure may be used to reference a FORTRAN or
PMA common block having the same name as the structure. Care must be
taken that the data items in the structure and block correspond
appropr ia te ly.

PL1G object modules can also interface with PMA (Prime Macro Assembler)
routines. See The Assembly Language Programmer's Guide.

PL1G AND THE EDITOR

The characters ~ and ; have special meanings to the editor which
conflict with their uses in PL1G. The " is the editor's escape
character and PLIG's "not" character, while the ; is the editor's
carriage return and PLIG's statement delimiter. A conflict arises
whenever an attempt is made to enter either of these characters into a
PL1G source program using the editor.

The editor functions of and ; can be transferred to other symbols
for the duration of an editor session by using the editor's SYMBOL
command. While in edit mode, type:

SY SEMICO a
SY ESCAPE b

where a and b must be single, currently non-special characters. The
character a will replace the semicolon as a carriage return, and b will
replace the up-arrow as an escape character. The semicolon and
up-arrow are thereby freed for ordinary use.

For more information, see The New User's Guide to Editor and Runoff.

More permanent solutions to this conflict are available through your
Prime field analyst.

PL1G AND PRIME UTILITIES

Prime offers three major utility systems for use by Prime programmers.
These are:

• Multiple Index Data Access System (MIDAS)

• Forms Management System (FORMS)

• Database Management System (DBMS)

For complete information on any of these utilities, see the appropriate
reference guide. Following is a brief description of MIDAS and FORMS.
At Rev. 17.2, PL1G does not provide an interface with DBMS.

1 - 7 A p r i l 1 9 8 0

S E C T I O N 1 I D R 4 0 3 1

Multiple Index Data Access System (MIDAS)

MIDAS is a system of interactive utilities and high-level subroutines
enabling the use of index-sequential and direct-access data files at
the applications level. Handling of indices, keys, pointers, and the
rest of the file infra-structure is performed automatically for the
user by MIDAS. Major advantages of MIDAS are:

• Large data files may be constructed

• Efficient search techniques

• Rapid data access

• Compatibility with existing Prime file structures

• Ease of building files

• Multiple user access to files

• Data entry lockout protection

• Part ia l / fu l l f i le delet ion ut i l i ty

PL1G interfaces MIDAS through the use of MIDAS subroutine calls. Since
MIDAS subroutines are written in Prime FORTRAN IV (FTN) the
restrictions mentioned above under INTERFACE TO OTHER LANGUAGES apply.

See: Reference Guide, Multiple Index Data Access System (MIDAS).

Forms Management System (FORMS)

The Prime Forms Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program which uses Prime's Input/Output Control System (IOCS),
including programs written in PL1G. Applications programs communicate
with FORMS through input/output statements native to the host language.
Programs that currently run in an interactive mode can easily be
converted to use FORMS.

FORMS allows cataloging and maintenance of form definitions available
within the computer system. To facilitate use within an applications
program, all form definitions reside within a centralized directory in
the system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion
of form definitions.

REV. 0

I D R 4 0 3 1 I N T R O D U C T I O N

The interface of PL1G with FORMS is identical to that of Prime FORTRAN
IV (FTN) , except that PL1G uses READ and WRITE on stream files - a
Prime extension - to access FORMS.

See: FORMS Management System.

THE SOURCE LEVEL DEBUGGER

Prime makes available a powerful interactive debugging tool, the Source
Level Debugger, which may be obtained by any Prime installation as a
separately priced item. Use of the debugger can greatly expedite and
simplify the debugging process. Major features of the debugger enable
the programmer to:

• Set both absolute and conditional breakpoints

• Request the execution of debugger commands (action list) when a
breakpoint occurs

• Execute the program step by step

• Call subroutines or functions from debugger command level

• Trace statement execution

• Trace selected variables, printing a message when their value
changes

• Print and/or change the value of any variable

• Print a subprogram call/return stack history (traceback)

• Examine the source file while executing within the debugger,
eliminating the need for hard-copy listings

See: The Source Level Debugger Reference Guide.

THE PRIMOS CONDITION-HANDLING MECHANISM

PRIMOS has two ways of reporting and dealing with errors: error codes
and PRIMOS conditions.

When a PRIMOS subroutine is called, it returns an error code. This
code must be tested by the calling program to establish that the
subroutine has executed successfully.

Some errors cannot be dealt with by returning an error code. For each
such error, a PRIMOS condition exists. When the error occurs, the
condition corresponding to the error is raised.

April 1980

S E C T I O N 1 I D R 4 0 3 1

When a condition is raised, PRIMOS activates the condition-handling
mechanism. The condition handler notes what condition exists, then
calls an error-handling routine known as an "on-unit" to deal with the
error that has occurred.

PRIMOS supplies a default on-unit that handles all conditions. A
programmer can specify his own response to a condition by supplying an
on-unit of his own. When a condit ion occurs for which a
programmer-supplied on-unit exists, the actions specified in the
on-unit will be taken, rather than those specified in the PRIMOS
default on-unit.

Information on the system default on-unit and the method for
substituting programmer-supplied on-units is contained in The Prime
User's Guide. For complete information on the condition handler, see
The PRIMOS Subroutines Guide.

CONVENTIONS USED IN THIS GUIDE

Various conventions are used in the following sections. Their meanings
must be clearly understood by the reader.

Conventions Indicating Extensions

When a specific feature is explicitly described in the text as being a
PL1G or Prime extension, the implication is that it is not part of PL/I
Subset G. No such feature should be used in any program which may have
to run under a non-Prime implementation of PL/I.

When the PL1G language is mentioned in general, the reference is to
Prime's extended implementation of PL/I Subset G as a whole.

Every PL1G extension is listed above under "PL1G Extensions to PL/I
Subset G."

Conventions in Examples

In all examples involving dialog between the user and the system, the
user's input is underlined, and the system's output is not. For
example:

OK, attach mydirec
OK, ed oldfile
EDIT

R E V . 0 1 - 1 0

IDR4031 INTRODUCTION

Examples consisting only of PL1G statements, with no responses from the
system, are not underlined.

ZERO: PROCEDURE (ARG);
DECLARE ARG FIXED BIN;
ARG = 0;
RETURN;
END;

Typographical Conventions

WORDS-IN-UPPER-CASE

words-in-lower-case

Brackets []

Vertical slash I

Parentheses ()

E l l ips is . . .

Pound sign ft

Uppercase letters identify command words
or keywords. They are to be entered
l i t e r a l l y .

Lowercase letters identi fy opt ions or
arguments . The user subst i tu tes an
appropriate numerical or text value.

Brackets indicate that the
is optional.

item enclosed

Ver t i ca l s lashes separa te a l te rna t i ve
options in an options list. Unless the
list of options is enclosed by brackets,
one option must be selected.

When parentheses appear in a statement
format, they must be included literally
when the statement is used.

An ellipsis indicates that
item may be repeated.

the preceding

The pound sign is
indicate a blank.

used in examples to

- 11 April 1980

Part II
The PL1G Language

I D R 4 0 3 1 O V E R V I E W

SECTION 2

OVERVIEW OF PL1G

This section gives an overview of the PL1G language and defines such
basic features as: program formatting rules, comment conventions,
block structure and scope rules, as well as exception handling and
input/output. The following sections are organized for easy reference
and provide accurate and complete definitions of all language features.

PROGRAM TEXT

Programs are written by using a terminal to enter text and by using a
text editor to correct and update the text. Programs produced on other
computer systems or on card punch machines can be loaded into the
computer from the card reader or magnetic tape.

Regardless of how the text is prepared and entered, it must not contain
extraneous information such as sequence numbers or operating system
control information.

The text may consist of variable length lines, as well as blank or
empty lines and need not conform to any particular format. However, to
improve the readability of the program text, the formatting rules
suggested in Section 12 and used within the examples in this manual
should be followed.

The program text that is input to the compiler is called a program
module. The results of compiling several program modules may be bound
together and executed as a single program.

NAMES, CONSTANTS, AND PUNCTUATION

The basic elements of the PL1G language are called tokens. A token is
a name, a constant, a punctuation symbol, a comment, or a compile-time
text modification statement as described later in this section.

Names

A name consists of a single letter, or a sequence of letters, digits,
and the underscore character. The first character of a name must be a
letter, and a name must not contain more than 32 characters. Examples:

EMPLOYEE_NAME

DELTA69

A

April 1980

S E C T I O N 2 I D R 4 0 3 1

Names may be written using both lower and upper case letters. A lower
case letter x is equivalent to an upper case X unless the -LCASE
command line option has been given. See Section 14.

Names cannot contain blanks or hyphens. A blank serves to separate
names that are not otherwise separated and a hyphen is the subtract
operator. An underscore must be used in place of a hyphen.

Names are also known as identifiers and are referred to as such by
error messages produced by the compiler. A name can be used to denote
an object operated upon by the program such as a variable, file, or
label. These names are known as declared names because their meaning
is established by a declaration of the name. Names also are used to
denote parts of statements such as verbs, options and clauses. A name
used to denote part of a statement is called a keyword. Example:

DECLARE X(5) FIXED;

L: X(3) = 25;

Both X and L are declared names, but DECLARE and FIXED are keywords.

There are no reserved names in PL1G. This means that names which are
used as keywords such as READ or INTO in a read statement may also be
used by the programmer as declared names. However, this practice makes
programs difficult to read and should be avoided whenever possible.

Constants

A constant is a sequence of characters that represents a particular
value. Examples:

25

7.5

3.12E-01

'This is a character-string constant'

•He said, "I don"t know."'

• l ' B

'1011'B

'775'B3

'A70'B4

The first example is an integer constant; the second is a fixed-point
constant; the third is a floating-point constant; the next two are
charac te r -s t r ing cons tan ts ; and the las t four a re b i t -s t r ing

REV. 0

I D R 4 0 3 1 O V E R V I E W

constants. The first two bit-string constants are written in binary
notation; the next is written in octal notation, and the last is
wr i t ten in hexadecimal notat ion. Nonbinary representat ions of
bit-string data are further discussed under BIT-STRING DATA in Section
3.

Arithmetic constants represent decimal values. Binary arithmetic
values have no constant representation, but any decimal constant can be
easily converted to a binary value by using it in a context that
expects a binary arithmetic value.

11
A character-string constant can contain any character except '. If a
is required within a character-string constant, it is written as
(The " character is not equivalent to ' or ' ' and has no more
significance than any other character within a constant.)

Punctuation

Names and constants must be separated from one another by one or more
blanks or by punctuation. Additional blanks may be used around
punctuation but are not required.

Punctuation symbols are either operators or separators.

Operators are:

+ _ * / **

= ~= < > <= >= ~< ~>

I (or !) & ~

I I (or !!) ->

Separators are:

O f . : ;

Examples:

A=B4C*D;

A = B+C *D;

DO K = N TO M BY K;

The first example requires no blanks because each name is separated
from the next by a punctuation symbol. The second example shows the
use of (or misuse of) extra blanks. The third example shows extra
blanks around = but otherwise, it has the minimal number of blanks.

April 1980

S E C T I O N 2 I D R 4 0 3 1

When an arithmetic constant is followed by a name, at least one blank
is required to separate the arithmetic constant from the name.

In contexts where a character-string or bit-string constant follows a
name, such as PICTURE '999', a blank is required by standard PL/I, but
is not required by the PL1G compiler.

COMMENTS

A comment can appear anywhere that a blank can appear and is equivalent
to a blank. The general form of a comment is:

/* Any sequence of characters except an asterisk followed
immediately by a slash */

Examples:

/*THIS IS A COMMENT*/

IF A>25 /* AND SO IS THIS */ THEN

If the */ is omitted from a comment, all program text up to the next */
is considered part of the comment. This causes part of the program to
be ignored by the compiler and may cause it to produce misleading error
messages. The same problem can occur if a character-string or
bit-string constant is not terminated with a '.

The compiler puts an * (asterisk) into the line number field of the
listing for each line on which a comment is continued from a preceding
line. This asterisk can be used to determine if the program text was
accidentally included in a comment.

TEXT REPLACEMENT AND INSERTION

During the compilation of a program module, the compiler recognizes and
evaluates two statements that alter the program text. These
statements, %INCLUDE and %REPLACE, simplify the job of writing large
programs, but are also useful in small programs.

%INCLUDE

The general form of %INCLUDE is:

%INCLUDE 'filename';

where filename is the name of a text file that is to be inserted into
the program text in place of the %INCLUDE statement. The filename is
an operating system file name and its format is implementation defined.

%INCLUDE can appear in place of a name, constant, or punctuation
symbol. The included text may contain additional %INCLUDE statements,

REV. 0

I D R 4 0 3 1 O V E R V I E W

but normally contains declarations that are common to more than one
program module.

%REPLACE

The general form of %REPLACE is:

%REPLACE name BY [-]constant [, name BY [-] constant] ...;

Each occurrence of name that follows the %REPLACE is replaced by the
constant or signed constant. %REPLACE is normally used to supply the
sizes of tables or to give names to special constants whose meaning
would not otherwise be obvious. Examples:

%REPLACE TRUE BY 'l'B;
%REPLACE TABLE_SIZE BY 100;
%REPLACE MOTOR_POOL BY 5;

DECLARE X(TABLE_SIZE) FIXED STATIC;

DO K = 1 TO TABLE_SIZE;

IF DEPARTMENT_NUMBER = MOTOR_POOL
THEN DO;

Both %REPLACE and %INCLUDE operate on the program text without regard
to the meaning of the text. This means that the replaced name can
accidentally be a keyword such as STOP or READ. In this case, an
"unrecognizable statement" error message is issued by the compiler when
it reads a subsequent STOP or READ statement. %REPLACE replaces all
subsequent occurrences of name without regard to the block structure of
the module. Block structure is discussed later in this section.

Also, %REPLACE is not part of standard PL/I and may not be available in
other implementations of PL/I.

STATEMENTS

As words and punctuation symbols are used to form sentences in English,
tokens are used to form statements in PL1G. A statement is a sequence
of tokens ending with a semicolon. All statements, except the
assignment statement, begin with a keyword that identifies the purpose
of the statement. Examples:

READ FILE(F) INTO(X);

GOTO L;

CALL P(A,B,C);

April 1980

S E C T I O N 2 I D R 4 0 3 1

RETURN;

STOP;

DO K = 1 TO 10;

A = -C; /* ASSIGNMENT STATEMENT */

Compound Statements

PL1G has two compound statements: the IF statement and the ON
statement. They are called compound statements because they contain
another statement. Examples:

IF A>B
THEN READ FILE (F) INTO (X) ;

ON ENDFILE(F) STOP;

The general form of an IF statement is:

IF expression
THEN statement
[ELSE statement]

Since each statement ends with a semicolon, an IF statement needs no
semicolon of its own. IF statements can be nested as shown by the
following example:

IF A>B
THEN IF D<C

THEN READ FILE(F) INTO(X);
ELSE STOP;

In this example, the second IF statement has both a THEN clause and an
ELSE clause, because an ELSE always corresponds to the immediately
preceding THEN. The first IF statement has only a THEN clause. If we
want to stop when A~>B we must write a null ELSE clause. Example:

IF A>B
THEN IF D<C

THEN READ FILE(F) INTO (X) ;
ELSE;

ELSE STOP;

ON statements are compound statements but are not nested. They are
used to respond to exceptional conditions and are discussed later in
this section, and in Section 9. Example:

ON ENDFILE(F) STOP;

REV. 0

I D R 4 0 3 1 O V E R V I E W

Order of Execution

Statements constitute a framework within which expressions are
evaluated and values are assigned to variables. Statements also
control the order of execution of the program.

Statements are normally executed in the order in which they are
written. However, each statement can be labeled and a GOTO statement
can be used to alter the normal order of execution. Example:

A = 5;
GOTO L2;

L I :
B = 7;

L2:
B = 4;

In this example, A is assigned 5, and B is assigned 4. The statements
beginning with label LI can be executed only if a GOTO statement
transfers control to the label LI.

Programs that contain numerous labels are more difficult to read and
normally have more errors than programs that contain few labels. The
use of labels and GOTOs can be avoided or minimized by using the IF and
DO statements to control the order of execution of statements.
Examples:

IF A>B
THEN DO;

END;

DO WHILE (A>B);

END;

DO K = 1 TO 10;

END;

The DO statement causes all statements between the DO statement and its
corresponding END statement to be executed a variable number of times
depending on the form of the DO statement. See Section 9 for a
complete discussion of DO statements.

April 1980

S E C T I O N 2 I D R 4 0 3 1

DECLARATIONS AND REFERENCES

The meaning of a name is determined by a declaration of the name rather
than by the contexts in which the name is used. There are two kinds of
declarations in PL1G, the DECLARE statement and the label prefix.

Although it can appear anywhere within the program, except as part of a
compound statement, a DECLARE statement is not an executable statement
and has no effect except to establish clearly the meaning of names.
Examples:

DECLARE F FILE;

DECLARE A(5) FLOAT;

DECLARE (I,J,K) FIXED BINARY(15);

F is declared as the name of a file; A is declared as a floating-point
array variable; and I, J, and K are declared as integer variables.

A label prefix declares a name as a name of a format, or as the name of
a procedure, or as a statement label. Examples:

P: PROCEDURE;

F: FORMAT(F(10,2) ,A(6));

L: READ FILE(F) INTO(X);

P is declared as a procedure name, F as a format name, and L as a
statement label. Label prefixes appearing on statements other than
FORMAT and PROCEDURE statements are declarations of statement labels.

Use of a name in any context, other than in a declaration, constitutes
a reference to the name. In order to determine the meaning of the
reference, the compiler searches for a declaration of the name. This
search resolves the reference by associating it with a declaration of
the name. Example:

DECLARE A FIXED BINARY(15);
DECLARE B FLOAT;

B = B+l;

A = A+l;

The compiler knows that it must generate a floating-point add for B+l
because it has resolved the reference B to the second DECLARE
statement. Likewise, it knows that it must generate an integer add for
A+l because it has resolved the reference A to the first DECLARE

REV. 0

I D R 4 0 3 1 O V E R V I E W

statement. See Section 6 for a complete discussion of reference
reso lu t ion .

PROCEDURES

A procedure is a sequence of statements beginning with a PROCEDURE
statement and ending with an END statement. A procedure defines a
block of statements and is sometimes called a block. Examples:

A: PROCEDURE;

END A;

B: PROCEDURE;

END B;

The preceding examples show two procedures A and B.

Procedures contained within other procedures are called nested or
internal procedures. Procedures not contained within another procedure
are called external procedures. A program module must consist of one
or more external procedures. Example:

A: PROCEDURE;

B: PROCEDURE;

END B;

C: PROCEDURE;

D: PROCEDURE;

END D;
END C;

END A;

Procedures B and C are nested within procedure A. Procedure D is
nested within procedure C. Procedure A is external.

April 1980

S E C T I O N 2 I D R 4 0 3 1

BLOCK STRUCTURE AND SCOPE

Each procedure establishes a distinct region of the program text called
the scope throughout which names declared within that procedure are
known. The scope of a name is therefore, that region of the program
within which the name may be referenced.

The scope of a name includes the procedure in which it is declared and
all procedures contained within that procedure, except those procedures
in which the same name is redeclared. Example:

A: PROCEDURE;
DECLARE (X,Y) FLOAT;

B: PROCEDURE;
DECLARE X FILE;
DECLARE Z FIXED;

END B;
END A;

The scope of Y includes both procedure A and procedure B. The scope of
X as a file is procedure B. The scope of Z is procedure B. Z cannot
be referenced from within A.

PARAMETERS AND ARGUMENTS

The purpose of a procedure is to "package" a set of executable
statements and declarations to form a block that can be executed from
several places in the program simply by calling it.

The usefulness of a procedure is greatly increased if it can be made to
operate on different values each time it is called. Example:

CALL P(A,B);

CALL P(D,E);

P: PROCEDURE(X,Y);

R E V . 0 2 - 1 0

I D R 4 0 3 1 O V E R V I E W

PUT FILE (F) LIST(X,Y);

END P;

A and B are arguments of the first call to the procedure P. While P is
executing as a result of the first call, the argument A is said to
correspond to the parameter X and the argument B corresponds to the
parameter Y. While P is executing as a result of the second call, D
corresponds to X and E corresponds to Y.

CALLS AND RETURNS

The statements within a procedure are only executed when the procedure
is called from another procedure. Example:

A: PROCEDURE;

CALL B;

END A;

B: PROCEDURE;

END B;

Procedure B is executed when it is called from procedure A. Procedure
A resumes execution when B is completed.

A procedure returns to its caller either by executing its END statement
or by executing a RETURN statement. Example:

A: PROCEDURE;

IF X<0 THEN RETURN;

END A;

- 1 1 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

BLOCK ACTIVATION AND RECURSION

Each time a procedure is called, it is said to be active and it remains
active until it returns from the call. Each such procedure activation
has an associated block of storage allocated on a stack. This block of
storage is called a stack frame and it is used to hold information that
is unique to each procedure activation, such as the location to which
control should return from the procedure activation.

If procedure A calls procedure B, the stack frame associated with the
activation of A is pushed down by the stack frame associated with the
activation of B. When B returns, its stack frame is removed from the
stack and the stack frame of A is then the current stack frame.

If procedure A calls itself or calls another procedure that calls A, A
is said to be a recursive procedure.

Recursive procedures must be written with the RECURSIVE option.
Example:

A: PROCEDURE RECURSIVE;

CALL A;

END A;

Recursive procedures are a powerful tool for use in applications that
process data bases or other list-structures. Because recursive
procedures do not exist in most other popular languages, they are
unfamiliar to many programmers.

The following example is a program that makes a copy of a list
structure. The example uses BASED variables and other concepts that
are discussed in later sections of this manual. Example:

NEW = COPY(OLD);

COPY: PROCEDURE(IN) RETURNS(POINTER) RECURSIVE;

DECLARE (IN,OUT) POINTER;
DECLARE 1 RECORD BASED,

2 FIELD1 FLOAT,
2 FIELD2 FLOAT,
2 SON POINTER,
2 DAUGHTER POINTER;

R E V . 0 2 - 1 2

I D R 4 0 3 1 O V E R V I E W

DECLARE NULL BUILTIN;

IF IN = NULL THEN RETURN (NULL);
ALLOCATE RECORD SET(OUT);
OUT->RECORD.FIELDl = IN->RECORD.FIELDl;
OUT->RECORD.FIELD2 = IN->RECORD.FIELD2;
OUT->RECORD.SON = COPY(IN->RECORD.SON)
OUT->RECORD.DAUGHTER = COPY(IN->RECORD.DAUGHTER);
RETURN(OUT);

END COPY;

Each record of the original list structure may be linked via pointers
to a son record and/or a daughter record. Either the son or the
daughter field may contain a null pointer value. COPY is called with a
pointer to the top record in the original list structure. It returns a
pointer to the top record in a new list structure which is a copy of
the original. Each activation of the procedure COPY has its own
instance of the variables IN and OUT.

Additional information about recursive procedures is given in Section 3
which discusses entry data.

VARIABLES AND STORAGE

A variable is a named object that is capable of holding values. Each
variable has two properties that determine what kind of value it holds
and how long it holds them. A variable's data type determines what
kind of values the variable holds, and a variable's storage class
determines how long it holds them.

Data Types and Conversion

Each variable must be declared to have a data type. Examples:

DECLARE A FLOAT DECIMAL;

DECLARE N FIXED BINARY(15);

DECLARE C CHARACTER(30);

DECLARE B BIT(l);

A is capable of holding any floating-point decimal value, N is capable
of holding any binary integer value, C is capable of holding any string
of 30 characters, and B is capable of holding either 'l'B or '0'B.

Failure to specify a data type causes the compiler to issue an error
message and to give the variable a data type of FIXED BINARY.

Although each variable is only capable of holding values of a specific

2 - 1 3 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

data type, the language provides a complete set of operations that
convert values from one data type to another. Whenever a value is
assigned to a variable, it is first converted to the data type of the
variable. Examples:

A - 1; /* converts 1 to FLOAT */

N = 2.5; /* converts 2.5 to integer 2 */

C = -4.5; /* converts -4.5 to a character string */

B = 0; /* converts integer 0 to '0'B */

A complete discussion of data types is given in Section 3, and a
complete discussion of conversions is given in Section 8.

Storage Classes

A variable's storage class determines when and for how long storage is
to be allocated for the variable. Since this storage holds the
variable's values, the storage class of a variable determines how long
the variable retains its values.

Unless declared otherwise, a variable is given the AUTOMATIC storage
class. This means that the variable is allocated storage each time
that its containing procedure is called. Every time the procedure
returns to its caller, the storage allocated for that call is freed.
Consequently, AUTOMATIC variables do not retain their values after
their containing procedure returns.

If a variable must retain its value between calls of its containing
procedure, it should be declared to have the STATIC storage class.
Examples:

DECLARE K FIXED BINARY STATIC;

DECLARE TABLE(4) CHARACTER(5)
STATIC INITIAL('A' , 'B ' , 'C' , 'D') ;

Each element of the array TABLE is given an initial value. Only STATIC
variables can be given initial values.

Storage for STATIC variables is allocated prior to program execution by
the compiler and/or loader. Consequently, the size of each STATIC
variable must be specified as an integer constant.

The additional storage classes BASED and DEFINED are explained in
Section 4. That section also provides more detailed information on
STATIC and AUTOMATIC storage.

R E V . 0 2 - 1 4

I D R 4 0 3 1 O V E R V I E W

BEGIN BLOCKS

A BEGIN block is exactly like a procedure except that: it is executed
by executing its BEGIN statement, it cannot have any parameters, it
always returns by executing its END statement, and execution of a
RETURN statement within a BEGIN block returns to the caller of the
procedure that immediately contains the BEGIN block. Example:

BEGIN;

END;

Because of its limitations, a BEGIN block is less useful than a
procedure and is normally not necessary. However, because a BEGIN
block serves to define the scope of any declarations that it contains,
it can be used to contain declarations and executable statements that
reference those declarations. In this manner a BEGIN block can be used
to redeclare a name that has been declared in a containing block and
can be used to cause allocation and freeing of the AUTOMATIC variables
declared within the block. Example:

DECLARE INDEX FIXED BINARY;

BEGIN;
DECLARE INDEX FILE;
DECLARE X(1000) FLOAT;

END;

INDEX is redeclared within the BEGIN block so that it can be used as a
file. A large array X is declared within the BEGIN block and is
allocated storage only during the execution of the BEGIN block.

EXCEPTION HANDLING

The ON statement gives the program the ability to respond to
exceptional conditions such as end-of-file, or computational errors
such as division by zero. Examples:

1. ON ENDFILE(F)
BEGIN;

END;

2. ON ENDFILE(G) STOP;

2 - 1 5 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

3. ON ERROR
BEGIN;

END;

The general form of an ON statement is:

ON condition-name on unit

condition-name is ERROR, ENDFILE(f), ENDPAGE(f), or KEY(f). on-unit is
any statement except: IF, ON, PROCEDURE, RETURN, DECLARE, DO, or END.

Execution of an ON statement establishes the on-unit as a block of
statements that are executed if the specified condition occurs. It
does not cause immediate execution of the on-unit.

An on-unit is established within its containing block's current
activation and remains established until that block returns to its
caller or until another on-unit is established for the same condition
within the same block activation.

If one of the possible conditions occurs during the execution of a
block and that block does not have an established on-unit for that
condition, the calling block's on-unit is used to respond to the
condition. If the calling block has no established on-unit for the
condition, its caller's on-unit is used. If no ancestor has an on-unit
for the condition, a default action is taken. Except for the ENDPAGE
condition, this default action terminates program execution and issues
an execution-time error message.

An on-unit for the ERROR condition can determine which of many possible
errors caused the condition by using the ONCODE built-in function
explained in Section 10. On-units for the ERROR condition cannot
resume execution of the statement in which the error was detected.
Normally, an on-unit should be written to print debugging information
and execute a STOP statement, or execute a GOTO statement to continue
execution of the program elsewhere.

Additional information on exception handling is given in Section 9
under the ON Statement.

INPUT AND OUTPUT

PL1G provides two types of input and output: stream I/O and record
I/O. Each type of I/O has its own statements and each type operates on
its own kind of files.

R E V . 0 2 - 1 6

I D R 4 0 3 1 O V E R V I E W

Fi les

A stream file is a sequence of characters organized into lines and
pages. A record file is a set of discrete records that are either
accessible sequentially or accessible by character-string valued keys.
Each record in a keyed file must have a unique key-value.

Each record of a record file may be of a different length from other
records in the file. The maximum length of a record and the length of
keys is implementation defined and given in Section 11.

A file is referenced by using a file name declared with the FILE
attr ibute. Example:

DECLARE F FILE;

F is a file name or a file constant. It is called a constant because
it cannot be the target of an assignment operation. Associated with
each file constant is a block of static storage called a file control
block in which information about the current status of the file Is
retained while the file is open. The form and content of this
information is of no interest to the PL1G programmer, but the
programmer must be aware that the file constant F is in effect a
pointer to or a designator of a file control block.

A file variable is a variable that can be assigned file values. That
is, it can be assigned a file constant or the value of another file
variable that previously had been assigned a file constant. Example:

DECLARE G FILE;
DECLARE F FILE;
DECLARE V FILE VARIABLE;

V=F;
V=G;

F and G are file constants each of which has an associated file control
block. V is a file variable that can be assigned file values. After
the first assignment, both F and V designate the same file control
block. Any operation performed on V is equivalent to the same
operation performed on F. After the second assignment, any operation
performed on V is equivalent to the same operation performed on G
because both V and G designate the same file control block.

A file name used as a parameter is a file variable and designates the
same file control block as its corresponding argument.

Each file control block has a file-id that is the name of its
associated file constant. This file-id is used as the value of the
ONFILE built-in function and as the default TITLE option used when
opening the file.

Complete information for each I/O statement is given in Section 9.

- 1 7 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

File Opening and Closing

A file is normally opened by executing an OPEN statement that gives the
name of the file as understood by the operating system as well as the
properties or attributes that the file is to have during the time that
it is open.

Refer to Section 9 for a discussion of OPEN statements.

Examples:

1. OPEN FILE(F) TITLE('ALPHA_NEW')
RECORD OUTPUT;

2. OPEN FILE(G) KEYED INPUT;

3. OPEN FILE(CONSOLE) TITLE('TTY -DEVICE')
STREAM INPUT;

4. OPEN FILE(PTR) TITLE('PR1 -DEVICE')
STREAM OUTPUT PRINT LINESIZE(132)
PAGESIZE(60);

The FILE option specifies a file value. This may be either a file
constant, file variable, or file-valued function as explained under
FILE DATA in Section 3.

The file value specified by the FILE option is subsequently used by I/O
statements to operate on the file.

The TITLE option gives the name by which the operating system knows the
file. The TITLE option may specify devices and may also contain any
additional information needed by the operating system. Refer to the
OPEN Statement in Section 9 for the specific format of the TITLE
opt ion.

If no TITLE option is given, a default TITLE is made from the file-id.

The properties that the file is to have while it is open are chosen
from the following sets:

STREAM [INPUT|OUTPUT [PRINT]]

RECORD [DIRECT|SEQUENTIAL] [INPUT I OUTPUT I UPDATE] [KEYED]

R E V . 0 2 - 1 8

I D R 4 0 3 1 O V E R V I E W

Certain attributes imply others. An attribute does not have to be
specified if it is implied by an attribute that is specified.

A t t r i b u t e I m p l i e d A t t r i b u t e s

P R I N T O U T P U T S T R E A M
DIRECT RECORD KEYED
K E Y E D R E C O R D
SEQUENTIAL RECORD
U P D A T E R E C O R D

Certain attributes are required. If not explicitly supplied or not
implied, they are supplied by default.

R e q u i r e d A t t r i b u t e D e f a u l t

STREAM or RECORD STREAM
INPUT or OUTPUT or UPDATE INPUT
SEQUENTIAL or DIRECT SEQUENTIAL, if RECORD

A LINESIZE option can be specified for any STREAM OUTPUT file. If none
is specified, a default line size is assumed. The default may vary
according to the file name or device. A PAGESIZE option can be
specified for a PRINT file. If none is specified, a default page size
is supplied.

If a file is operated upon by an I/O statement prior to being opened,
it is opened implicitly and given a set of default attributes. It has
a default TITLE taken from the file-id and it has attributes determined
by the kind of statement used to open the file.

Sta tement Open ing At t r ibu tes

GET STREAM INPUT
PUT STREAM OUTPUT
READ RECORD INPUT
WRITE RECORD OUTPUT
REWRITE RECORD UPDATE
DELETE RECORD UPDATE

Implied attributes and default attributes are also supplied in an
attempt to make a complete set of attributes. Because defaults are not
obvious and can produce the wrong attributes, programmers should always
use an OPEN statement to explicitly open a file and should supply
sufficient attributes to ensure correct opening.

File attributes can also be declared with a file constant in a DECLARE
statement. Any such attributes are merged with the attributes supplied
by the opening to form the set of file attributes for a given opening.
The programmer must ensure that file attributes declared in a DECLARE
statement are valid for all openings of the file control block that is
associated with the file constant for which the attributes were
declared.

1 9 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

A file is closed by executing a CLOSE statement or when the program
executes a STOP statement. Once closed, a file control block can be
used to open another file, or the same file may be opened again with
possibly different attributes. Example:

OPEN FILE(F) TITLE('ALPHA_FILE')
RECORD OUTPUT;

WRITE FILE(F) FROM(X);

CLOSE FILE(F);

OPEN FILE(F) TITLE('ALPHA_FILE')
RECORD INPUT;

READ FILE(F) INTO(X);

Stream I/O

Stream files are written by PUT statements and are read by GET
statements. Transmission of data to or from a stream file under
control of a format-list is called edit-directed I/O. Transmission of
data to or from a stream file without a format-list is called
list-directed I/O. Format-lists can be part of the GET or PUT
statement or can be given by a FORMAT statement.

Execution of a GET or PUT statement transmits data to or from the
current line of a stream file but does not generally produce or consume
an entire line. Several PUT statements can be used to build a given
line or a single PUT may build one or more lines. Likewise, several
GET statements may read values from a given line or a single GET
statement may read one or more lines.

Each stream file has an associated line size that is determined when
the file is opened. Lines of an output file contain n characters where
n is the line size of the file. However, a shorter line can be created
by use of a SKIP option on a PUT statement. Example:

PUT FILE(F) SKIP LIST(A,B,C);

PUT FILE(F) SKIP;

This example causes the current line to be output. Then one or more
new lines containing the values of A, B, and C is created. The second
PUT statement forces the last line containing A, B, and C to be output
and starts a new line. The SKIP option is always executed before any
data is transmitted.

R E V . 0 2 - 2 0

I D R 4 0 3 1 O V E R V I E W

On input, each line may be of any length up to the value of the line
size. Execution of a GET statement reads from the current line until
it is empty, then reads a new line and continues reading values and
lines until the list of variables has been read. A SKIP option can be
used to force a new line to be read prior to reading any values.
Example:

GET FILE(F) LIST(A,B,C);

GET FILE(F) LIST(D);

GET FILE(F) SKIP LIST(X,Y);

In this example, A, B, and C are read from the current line or from as
many lines as are necessary. D is read from the same line as C, unless
C happened to be the last value on its line. The SKIP option reads a
new line and consequently ignores any values remaining on the line
after the value received by D. X and Y are read from the line read by
the SKIP as well as any additional lines that are necessary.

A PAGE option can be used in a PUT statement to begin a new page prior
to transmitting any values. Example:

PUT FILE(F) PAGE LIST(A,B,C) ;

A complete discussion of GET and PUT statements as well as FORMAT
statements is given in Section 9.

An output stream file opened with the PRINT attribute has a current
line number whose value can be accessed using the LINENO built-in
function. Each time a line is written to the output stream, the line
number is incremented by one. This occurs regardless of what caused
the lines to be written. Each new line is initially positioned so that
the next item is written to column 1 of the line.

An output stream file opened with the PRINT attribute has a current
page number and a page size. The current page number can be read using
the PAGENO built-in function and can be set using the PAGENO
pseudo-variable. The ENDPAGE condition is signalled when the line to
be written has a line number that is page size plus one.

Each time a new page is written, the line number is reset to one and
the page number is incremented by one.

If an on-unit for the ENDPAGE condition does not write a new page, the
line number is allowed to increase indefinitely until a new page is
written. The ENDPAGE condition is only signalled when the line to be
written has a line number one greater than the page size.

A new page is only written by a PAGE option of a GET statement, by a
PAGE format-item, and by the default on-unit for the ENDPAGE condition.

Control characters such as carriage return, new line, form feed,

2 - 2 1 A p r i l 1 9 8 0

S E C T I O N 2 I D R 4 0 3 1

vertical tab, horizontal tab, ring bell, null, etc. must not be
written as data characters to a stream file and cannot be read as data.
In some implementations, these characters may be used to mark line and
page boundaries, but in other implementations, boundaries may be
unmarked.

L is t -d i rected I /O: Values t ransmi t ted by l is t -d i rected I /O are
separated by blanks on output and may be separated by blanks or commas
on input. Each value is transmitted in a readable format determined by
the value's data type. This is the most convenient kind of I/O for
many applications. Example:

PUT FILE(F) LIST(A,B);

If file F has been opened as STREAM OUTPUT (but not as PRINT), A is an
integer declared FIXED BINARY(15) and has a current value of -75, and B
is a character-string declared CHARACTERS) whose current value is
DOG#fr, this example produces:

*M##i-75#,DOG#l,#

in the current output line of file F. The field W###-75 is produced
by conversion of the FIXED BINARY(15) integer to a character-string
(the larger number of blanks allows for the maximum possible value plus
sign and decimal point and leading 0 for fractional values as explained
in Section 8).

A single blank separates the value of A from the value of B, that is,
'DOGfMT. The last blank separates B from the next field.

If F had been opened as PRINT, enough blanks would have been supplied
at the end of each item to align the next item at an implementation
defined tab stop. Also, the single quotes around the value of B would
have been omitted.

For input, list-directed I/O considers each blank or comma to terminate
a field. Excess blanks within a field to be assigned to an arithmetic
variable are ignored. Such fields must simply contain a valid constant
as could be written in the text of a program.

A field to be assigned to a character-string variable may contain a
constant as written in the text of a program or it may contain a
sequence of any characters. In the latter case, the sequence begins
with the first nonblank character in the field and ends with the
character immediately preceding the next comma or blank. Example:

GET FILE(F) LIST(A,B);

If A is FIXED BINARY(15) and B is CHARACTER(5) , the following lines
have the indicated effect on the values of A and B:

R E V . 0 2 - 2 2

IDR4031 OVERVIEW

Line

5, 'abc '#
-45#Fabc' f
-45#,frabc-4#

■45
-45

abc#&
abc»#
abc-4

Edit-directed I/O: Values transmitted by edit-directed I/O are
transmitted into fixed length fields whose length and content are
controlled by data-formats. Each data-format corresponds to an element
in the value list of the GET or PUT statement and causes that value to
be converted and transmitted. Example:

PUT FILE(F) EDIT(A,B) (F(7,2),A(6));

If A is declared FIXED BINARY(15) and has a current value of -45, and B
is declared CHARACTER(4) and has a current value of DOG#, the following
is written into the current line of file F:

#-45.00DOG##i

Control formats can be used to force new lines, skip parts of lines,
etc. Example:

PUT FILE(F) EDIT(A,B) (SKIP,F(7,2),X(3),A(6));

Using the same values of A and B as our previous example, this
statement produces:

#-45.00###DOG##|

in a new output line.

Edit-directed input requires that each input line be exactly described
by the controlling format. If the current input line contains fewer
characters than are required to satisfy the format, additional lines
are read until the format is satisfied. Example:

GET FILE(F) EDIT(X) (A(80));

If X is declared as CHARACTER(100) and the current line contains only
60 characters: the 60 characters are read, a new line is read, and 20
additional characters are read from that line. The 80 characters thus
read are then assigned to X and 20 blanks are used to pad the value of
X.

Record I/O

Record files are read and written using READ, WRITE, REWRITE, and
DELETE statements. Execution of one of these statements transmits one
record to or from the file and updates the current position of the
fi l e .

- 23 April 1980

S E C T I O N 2 I D R 4 0 3 1

Record files with keys can be opened as SEQUENTIAL, KEYED SEQUENTIAL,
or DIRECT files. The method of opening determines the operations that
are permitted on the file while it is open.

O p e n e d A s O p e r a t i o n s A l l o w e d

SEQUENTIAL READ|WRITE wi thout key
KEYED SEQUENTIAL READ | WRITE I REWRITE I DELETE with

optional KEY
DIRECT READ|WRITE I REWRITE wi th

required KEY

A record file is opened for INPUT, OUTPUT, or UPDATE. The method of
opening determines the operations that are permitted on the file while
it is open.

O p e n e d A s O p e r a t i o n s A l l o w e d

I N P U T R E A D
O U T P U T W R I T E
UPDATE READ I WRITE | REWRITE I DE LETE

If a file opened for INPUT does not exist, an error is signalled.

If a file opened for OUTPUT or UPDATE does not exist, a file is
created. If the file has been opened as DIRECT or KEYED SEQUENTIAL, a
keyed file is created; otherwise, a nonkeyed file is created.

If a file opened for OUTPUT already exists, it is deleted and a new
file is created, unless -APPEND appears in the TITLE option.

A SEQUENTIAL file with or without keys always has a current position
that is advanced to the next record by a READ or WRITE, but which is
not advanced by a REWRITE or a DELETE. After opening for INPUT or
UPDATE, files are positioned ahead of the first record and unless
repositioned by a KEY option, the first operation on the file must be a
READ.

Record I/O statements copy the storage of a variable to or from a
record in a file. No conversion is performed and no check is made to
ensure that the data being read is of the proper type to store into the
variable. The variables used in INTO or FROM options cannot be
unaligned bit-strings or structures consisting entirely of unaligned
bit-strings, because such variables normally share a portion of their
storage with other members of the same array or structure. Also note
that an expression cannot be used in a FROM option. Examples:

READ FILE(F) INTO(X);

READ FILE(F) KEY(N+N) INTO(Y);

WRITE FILE(G) FROM(X);

WRITE FILE(G) KEYFROM (N+M) FROM(Y) ;

R E V . 0 2 - 2 4

I D R 4 0 3 1 O V E R V I E W

REWRITE FILE(H) KEY(N+M) FROM(X);

DELETE FILE(H) KEY (N+M);

A REWRITE statement replaces an existing record in an UPDATE file with
a new record. A DELETE statement removes an existing record from an
UPDATE file.

A complete discussion of record I/O statements is found in Section 9.

- 2 5 A p r i l 1 9 8 0

I D R 4 0 3 1 D A T A

SECTION 3

DATA AND DATA TYPES

DATA TYPES

Each value has a data type that determines which operations can be
performed on the value and how the value is represented in storage.
Data types are declared for variables and function results using the
fol lowing attr ibutes:

Arithmetic Data String Data Other Data

FIXED BINARY PICTURE POINTER
FIXED DECIMAL CHARACTER LABEL
FLOAT BINARY CHARACTER VARYING ENTRY
FLOAT DECIMAL BIT

BIT ALIGNED
FILE

These attributes are also used to declare named constants such as files
and external procedures that are part of another program module, and
they are used within the ENTRY attribute to describe the data type of
each parameter of a procedure. See Section 5 for a discussion of the
ENTRY attribute.

The data type of a value produced by an expression is determined by the
operators and the built-in functions within the expression. Section 7
gives the data type produced by each operator and Section 10 gives the
data type of the values produced by each built-in function.

The data type of a constant is determined by the syntax of the
constant.

A variable or value having one of these data types is called a scalar
variable or scalar value, unless it is an array. In that case, it is
called an array variable or array value.

ARITHMETIC DATA

Each arithmetic value has a base that is either binary or decimal, a
scale that is either fixed-point or floating-point, and a precision
that is the number of digits in the value. These three properties
collectively constitute the data type of arithmetic values and can be
expressed using the following attributes:

FIXED BINARY(p)
FIXED DECIMAL (p,q)
FLOAT BINARY(p)
FLOAT DECIMAL (p)

Each implementation of PL/I Subset G imposes limits on the maximum

3 - 1 A p r i l 1 9 8 0

S E C T I O N 3 I D R 4 0 3 1

values of p and q. These limits normally are different for each
combination of base and scale.

Fixed-point Data

Fixed-point numbers contain p digits. For fixed-point decimal numbers,
g of those digits may be fractional digits. Fixed-point binary numbers
are always integers. Examples:

DECLARE K FIXED BINARY(15);

DECLARE D FIXED DECIMAL(7,2);

The values of K are fixed-point integers with 15 binary digits.
Therefore, K can hold any value in the range -32767 to +32767 or
-(2**15)+1 to (2**15)-1.

The values of D are fixed-point numbers with 7 decimal digits, two of
which are fractional digits. Therefore, D can hold any value in the
range -99999.99 to +99999.99

Because most computers calculate addresses of data using binary
integers, programmers should use FIXED BINARY variables whenever
possible. The relative efficiency of FIXED BINARY variables used as
subscr ip ts , s t r ing lengths, do index var iab les, e tc . is very
s i g n i fi c a n t .

FIXED DECIMAL values are normally used only when fractional digits are
required. The representation of FIXED DECIMAL values within storage
depends on the implementation, but it is normally packed decimal data
that cannot be directly used in address calculations and that normally
requires more computer time to process than does binary data.

Except for division, all operations on fixed-point data align the
decimal points and produce results that retain all fractional digits,
and as many integral digits as can be supported by the implementation.
The divide operator's result has a precision that provides for all
possible integral quotient digits plus as many fractional digits as can
be supported by the implementation. In most implementations, an
attempt to calculate a fixed-point value larger than can be supported
results in a signal of the ERROR condition.

In the full PL/I language, operations involving both decimal and binary
values always produce a binary result value. However, because binary
fractions are not permitted in subset PL/I, any operation that produces
a fractional result produces a warning diagnostic from the compiler and
a decimal result.

An implementation may retain more than p digits when representing
fixed-point values in storage. However, a program that produces values
of more than p digits is invalid and may or may not produce consistent
results when run on another implementation of PL/I. If a fixed-point
value is converted to a character-string or bit-string, the length of

REV. 0

I D R 4 0 3 1 D A T A

the string is determined by p, not by the actual value. See Section 8
for a discussion of the conversion rules.

Fixed-point values are never rounded unless explicitly rounded by the
use of a built-in function. Assignment to a fixed-point variable
causes truncation of excess low order digits. All possible roundings
can be performed by use of the CEIL, FLOOR, TRUNC, or ROUND built-in
funct ions.

Fixed-point decimal values are always stored so as to accurately
represent decimal fractions. A fixed-point decimal value of 10.50 is
never represented as 10.49.

Fixed-point constants are written as decimal numbers with or without a
decimal point. Examples:

4.5

4100.01

If a fixed-point constant contains a decimal point, it is considered to
be a scaled fixed-point value and is stored and accessed like a FIXED
DECIMAL variable. Fixed-point constants without a decimal point are
integer constants and can safely be used in operations with any other
arithmetic value regardless of the other value's base or scale.
Programmers are advised to always write integer constants without a
decimal point.

The precision of a fixed-point constant is the number of digits in the
constant.

Floating-point Data

Floating-point numbers consist of a mantissa m, a base b, and an
exponent e. The number is given by:

m*b**e

The mantissa m is a fraction containing at least p digits. The value
of b and the possible range of e are defined by each implementation.
However, if the base is binary, m contains the equivalent of at least p
binary digits, and if the base is decimal, m contains the equivalent of
at least jo decimal digits. Examples:

DECLARE X FLOAT BINARY(23);

DECLARE Y FLOAT DECIMAL(7);

In this example, the values of X are floating-point numbers whose
mantissa contains the equivalent of at least 23 binary digits. The
values of Y are floating-point numbers whose mantissa contains the

April 1980

S E C T I O N 3 I D R 4 0 3 1

equivalent of at least 7 decimal digits.

The representation of floating-point values in storage depends on the
implementation. An implementation may represent the mantissa in any
base that it chooses providing that it contains an equivalent of at
least £ binary or p decimal digits. On some computers, decimal
floating-point values are represented by using a decimal mantissa, but
most implementations use a binary or hexadecimal mantissa for all
floating-point numbers.

Unless the implementation represents decimal floating-point numbers
differently than it represents binary floating-point numbers, the
choice of binary or decimal is not important. In that case, the
programmer should specify decimal precisions that suit the problem
being solved. (Refer to Appendix C for a discussion of data formats.)

Because floating-point values may be represented in any base (usually
not decimal) and because excess digits may be lost during calculations,
floating-point values are approximate. However, any integer value that
is converted to floating-point and converted back to integer retains
its original value. Likewise, the floating-point calculations of add,
subtract, and multiply of integer values produce integer values.

Floating-point constants are written as a fixed-point constant followed
by an exponent. Examples:

5E+02

4.5E1

100E-04

.001E-04

0E0

Floating-point constants have a decimal precision of p, where p is the
number of digits in the fixed-point constant. For example, the second
constant given above has a precision of 2.

When fixed-point constants such as 1.5 are used in operations with
floating-point values, they should be written with an exponent in order
to avoid conversion of fixed-point decimal values to floating-point.

I f float ing-point values are converted to character-str ings or
bit-strings, the length of the resulting string is determined by p, not
by the actual value. See Section 8 for a discussion of conversion
ru les.

PICTURED DATA

A value whose data type is determined by a PICTURE attribute or by the
P format in a FORMAT statement is called a pictured value. Pictured

REV. 0

IDR4031 DATA

values are character-string values that represent fixed-point decimal
numbers that may contain embedded symbols such as . , $ CR DB etc.
Examples:

DECLARE A PICTURE '$ZZ,ZZZV.99CRf;

DECLARE B PICTURE '$$,$$$V.99-';

DECLARE C PICTURE '$**,***V.999';

DECLARE D PICTURE ' 9V.999';

DECLARE E PICTURE '9999V9999S';

If the value 1234.56 were assigned to each of these variables, the
resulting pictured values would be:

Var iab le

A
B
C
D
E

Pictured Variable

$#1,234.56##
#$1,234.56#
$*1,234.560
#1234.560
12345600+

Note

The pound sign (#) in the preceding (and subsequent) examples
of pictured data represents a space.

The purpose of each picture character is explained in the following
l i s t :

C h a r a c t e r I n t e r p r e t a t i o n

V Indicates the position of the decimal point. All
digit positions to the right of the V are
fractional digits. Any value assigned to a
pictured value is first scaled so that its
decimal point is aligned with the V.

B , . / These picture characters are inserted into the
pictured value only if they are preceded by a
non-zero digit or if they are preceded by a 9 or
V picture character. If they are not inserted, a
zero suppression character of blank or * is
inserted instead. The picture character B
denotes a blank rather than the the letter B.

Z Causes zero suppression using a blank as the the
suppression character. A Z must not be preceded
by a 9 or a drifting field. A picture containing
a Z must not also contain an *.

April 1980

S E C T I O N 3 I D R 4 0 3 1

* Causes zero suppression using * as the the
suppression character. An * must not be preceded
by a 9 or a drifting field. A picture containing
an * must not also contain a Z.

S If an S occurs more than once in a picture, the
entire field of S's is a drifting field and can
only contain a V and one or more B , . or /
picture characters. Such a field cannot be
preceded by a 9, Z, or * and if it contains a V
followed by one or more S's, it cannot be
followed by a 9.

The total number of digits represented by a
drifting field is one less than the number of S's
in the field. The digits are zero suppressed and
a sign of + or - is inserted immediately
preceding the most significant digit.

A single S causes a sign of + or - to be inserted
into the pictured value.

+ Operates exactly like S, except that the sign of
negative values is indicated by a blank.

Operates exactly like S, except that the sign of
positive values is indicated by a blank.

$ Operates l ike S, except that a $ is inserted
instead of the sign.

9 Causes zero suppression to stop and a digit to be
inserted into the pictured value.

CR These two characters must appear as a pair and
may only appear on the rightmost end of the
picture. They are replaced by two blanks if the
value is not negative.

DB Exact ly l i ke CR

A picture cannot contain more than one sign character + - S CR or DB
unless all such sign characters are part of a drifting field.

When a zero value is assigned to a pictured variable and the picture
does not contain at least one 9, the entire pictured value is filled
with blanks or with * depending on whether or not the picture contained
any * picture characters.

When a nonzero value is assigned to a pictured variable and the V is
followed by zero suppression characters or by part of a drifting field,
the V stops zero suppression. Examples:

REV. 0

I D R 4 0 3 1 D A T A

DECLARE A PICTURE 'ZZZV.ZZ';

DECLARE B PICTURE ■***v.**CRl;

A value of .01 assigned to A and B produces ###.01 and ***.01##. A
value of zero assigned to A and B produces ###### and ********.

If a V is not given, one is assumed to be on the rightmost end of the
p ic tu re .

Each 9, Z, or * is considered to be a digit of precision. Within a
drifting field each S, +, -, or $, except the first one, is considered
to be a digit of precision. All digits of precision following the V
are fractional digits. Examples:

DECLARE A PICTURE 'ZZZV.ZZ'

DECLARE B PICTURE ' V.--'

A has a precision of (5,2) while B has a precision of (4,2) .

Negative values cannot be assigned to a pictured variable unless the
picture contains a CR, DB, -, or S.

Values assigned to pictured variables are truncated and aligned with
the V as they would be when assigned to a FIXED DECIMAL variable of the
equivalent precision.

Used in contexts that expect an arithmetic value or used with a
relational operator, pictured values are converted to fixed-point
decimal values with a precision p and cj that are determined by the
p ic tu re .

A pictured value is operated upon as if it were a character-string
value only when it is assigned to a character-string variable, and when
it is an operand of the concatenate operator or of a built-in function
that expects character-str ing operands. In al l other contexts,
pictured values are operated upon as if they were fixed-point decimal
values.

CHARACTER-STRING DATA

A character-string value is a sequence of characters. The number of
characters in a sequence is called the length of the value.

A character-string of zero length is called a null string.

A character-string variable or character-string valued function is
declared with these attributes:

CHARACTER(n)
o r

CHARACTER(n) VARYING

April 1980

S E C T I O N 3 I D R 4 0 3 1

n is an integer-valued expression that specifies the maximum length of
all string values that can be held by the variable or returned by the
func t ion .

The VARYING attribute causes the string variable or function to hold or
return values of varying lengths. The representation of a varying
string variable in storage is such that any string up to n characters
may be held by the variable, and the length of the current string is
retained as part of the value.

Without the VARYING attribute, a string variable or function always
holds or returns values of length n. An assignment to a nonvarying
string always extends short values with blanks on the right to make
them n characters long.

Assignments of a string of more than n characters to either a VARYING
or a nonvarying string variable causes only the leftmost n characters
to be assigned and excess characters to be truncated.

Character-string values are compared from left-to-right using the
collating sequence of the computer. Strings of unequal length are
compared by extending the shorter string with blanks on the right.

Nonvarying character-string variables always occupy exactly n bytes of
storage. As elements of arrays or members of a structure, they begin
on the next available byte and are not aligned on word or other storage
address boundaries. This permits an array of nonvarying characters to
be stored and accessed as if it was a single string. See Section 4
which discusses storage sharing.

A character-string constant is written as:

'Any characters except quote'

If a quote (apostrophe) is required within the constant, it must be
written as a pair of quotes. Examples:

'ABC

'He said, "I don''t know."'

The second example shows a pair of quotes used within the word don't.
It also shows the insignificance of the double quote as a delimiter of
a character-string constant. The last example is a null string.

REV. 0

I D R 4 0 3 1 D A T A

BIT-STRING DATA

A bit-string is a sequence of bits. The number of bits in the sequence
is called the length of the value.

A bit-string of zero length is called a null string.

A bit-string variable or bit-string valued function is declared with
these attributes:

BIT(n)
or

BIT(n) ALIGNED

n is an integer valued expression which specifies the maximum length of
all string values that can be held by the variable or returned by the
func t ion .

If a value of less than n bits is assigned to a bit-string variable,
the variable is extended on the right with zero bits to make it n bits
long. If a value of more than n bits is assigned, only the leftmost n
bits are used and the excess bits are truncated.

The ALIGNED attribute causes the bit-string variable for which it is
declared to be aligned in storage so as to make it more efficiently
accessed. It may also cause the variable to occupy more than n bits,
but does not increase the size of values that can be stored in the
variable. The ALIGNED attribute has no effect on operations performed
on the variable, but is considered part of the data type for purposes
of argument/parameter matching and storage sharing as described in
Section 4.

Bit-string values are compared from left to right a bit at a time until
an inequality is found. The shorter operand is extended with zero bits
on the right to make it the length of the other operand.

A bit-string is not a word of storage in a computer and is not an
arithmetic value. It is a sequence of bits that is always operated
upon from left to right just as a character string is operated upon
from left to right.

However, an unaligned bit-string variable always occupies exactly n
bits of storage. As elements of arrays or members of structures, they
always begin on the next available bit and are not aligned on byte,
word, or other storage address boundaries. This permits a structure
containing unaligned bit-strings to be used to describe objects such as
system control tables, machine instructions, etc. commonly used by
systems programmers.

A bit-string of length 1 is a boolean value with the possible values of
0 meaning false and 1 meaning true.

April 1980

S E C T I O N 3 I D R 4 0 3 1

A bit-string constant is written as: 'Zeros and Ones'B. Examples:

' l ' B

'10110'B

•0'B

" B

The last example is a null bit-string.

Bit-string constants may also be written using a string of characters
to represent the bit-string:

'character string'Bn

Where n is 1, 2, 3, or 4 and is the number of bits each character
represents. Table 3-1 gives the permitted set of characters and shows
the corresponding bit-string values. Examples:

•073'B3

•A04'B4

The first example is equivalent to '000111011'B and the second example
is equivalent to '101000000100'B. (The first, '073'B3, represents an
octal value, and the second, 'A04'B4, represents a hexadecimal value.)

POINTER DATA

A pointer value is the address of a variable's storage. Example:

DECLARE A(5) FIXED BINARY(15);
DECLARE P POINTER;

P = ADDR(A(K));

P is a pointer variable that is capable of holding the address of any
PL1G variable. The assignment statement uses the ADDR built-in
function to calculate the address of A(K) and assigns that address as
the value of P.

A pointer is used with a template to access the storage to which it
points. Example:

DECLARE X FIXED BINARY(15) BASED;

P->X =10;

R E V . 0 3 - 1 0

IDR4031 DATA

Table 3-1.
Permitted Set of Characters and
Corresponding Bit-String Values

B or
_

Bl B2 B3 B4
4.

0 0 00 000 0000 |
1 1 01 001 0001 |
2 i l l e g a l 10 010 0010 I
3 i i 11 011 0011 |
4 i i i l l e g a l 100 0100 |
5 H 101 0101 |
6 it 110 0110 |
7 ii 111 0111 |
8 H i l l e g a l 1000 |
9 ii 1001 |
A •i 1010 |
B i t 1011 |
C ii 1100 |
D ii 1101 |
E ii 1110 |
F

-J
1111 |

X is a BASED variable or template describing a fixed-point binary
integer. P is the pointer variable from our previous example. The
assignment assigns 10 to A(K) .

Pointers are normally used to locate the storage of dynamically
allocated BASED variables as described in Section 4, rather than used
as a mechanism for accessing another variable's storage as is shown by
these two examples.

The null pointer value is produced by the NULL built-in function. It
is a unique value that does not address any variable and is used to
indicate that a pointer variable does not currently address anything.
Example:

DECLARE CHAIN HEAD POINTER;

CHAIN HEAD = NULL();

- 11 April 1980

SECTION 3 IDR4031

Pointer values may be assigned, compared for equality or inequality, or
passed as arguments, and returned from functions, but no calculations
or conversions can be performed on them. They cannot be transmitted in
stream I/O.

If the variable whose storage is addressed by a pointer value is freed,
the pointer value can no longer be used. Use of such a pointer to
access the storage causes unpredictable results.

Because most computers cannot directly address unaligned bit data, the
compiler produces a warning diagnostic when the argument of the ADDR
built-in function is an unaligned bit string. However, this warning
can be ignored if portability is not a concern.

The BASED variable that is used as a template normally must have the
same data type as the variable addressed by the pointer. Violations of
this rule cause unpredictable results. Programs that violate this rule
and produce "correct" results, may fail when compiled with optimization
enabled or may fail when moved to another implementation of PL/I. See
Section 4 for a discussion of storage sharing by BASED variables.

There is no constant representation of a pointer value. However, the
NULL built-in function can be used in any context, including an INITIAL
attribute, where a constant might be desired.

LABEL DATA

A label prefix on a statement other than a PROCEDURE or FORMAT
statement is a declaration of a statement label.

The LABEL attribute can be used to declare variables and functions
whose values are labels. Example:

A: PROCEDURE;
DECLARE L LABEL;

L I :

L = LI;

The label variable L is assigned a statement label value. A subsequent
GOTO L; would transfer control to the statement labeled LI.

A label value consists of two parts. One part designates a statement
(the instructions compiled for the statement) and the other part
designates a stack frame of the block that immediately contains the
statement. In the previous example, the assignment of LI to L assigns
a designator to the statement labeled LI as part one of L, and assigns
a designator to the current stack frame of procedure A as part two of

REV. 0 - 12

I D R 4 0 3 1 D A T A

L. The execution of a subsequent GOTO uses the stack frame designator
only if the GOTO is executed in a block activation other than the one
whose stack frame is designated by the label value. The value of a
label variable is invalid and must not be used if its stack frame
designator refers to a block that is no longer active. Example:

A: PROCEDURE;
DECLARE L LABEL;

LI :

L = LI;

GOTO L;

B: PROCEDURE;

GOTO L;

Execution of the first GOTO simply transfers control to LI because it
occurs within the same block activation as assigned LI to L (and
consequently the stack frame component of L designates the stack frame
that is current when the GOTO is executed). However, execution of the
second GOTO occurs within a block activation other than the one that
assigned to L. Execution of the second GOTO first uses the stack frame
designator of L to terminate the block activation of B and restore the
block activation of A; then it transfers control to the statement
labeled LI.

Label prefixes may be subscripted by a single optionally signed integer
constant. Example:

- 1 3 A p r i l 1 9 8 0

SECTION 3 IDR4031

CASE(l):

CASE(2):

CASE(3):

CASE(6):

GOTO CASE(K);

CASE is a one-dimensional array of statement labels containing 6
elements. Elements 4 and 5 are undefined and cannot be used. Use of
an undefined element produces unpredictable results.

Label prefixes on PROCEDURE and
subscripted.

FORMAT statements cannot be

Because the label array is declared by label prefixes, it cannot also
be declared as a LABEL variable by appearing in a DECLARE statement.

Label values may be assigned, compared for equality or inequality,
passed as arguments, and returned from functions, but no calculations
or conversions can be performed on them. They cannot be transmitted in
stream I/O.

An array of statement labels, such as CASE in our previous example,
cannot be used as an array value, but its elements can be used in any
context that permits a statement label.

ENTRY DATA

The label prefix on a PROCEDURE statement is a declaration of a
procedure name. Names of external procedures that are not part of the
compiled module must be declared using an ENTRY attribute and, if they
are functions, a RETURNS attribute.

The keyword ENTRY is used rather than PROCEDURE because in full PL/I,
procedures can be entered at points other than the PROCEDURE statement.
Examples:

DECLARE E ENTRY(FIXED BINARY(15), POINTER);
DECLARE F ENTRY((5) FLOAT DECIMAL(7));

RETURNS(FLOAT DECIMAL(7));

E is declared as a procedure name that requires two arguments and which

REV. 0 - 14

I D R 4 0 3 1 D A T A

must be called as a subroutine by a CALL statement. F is declared as a
procedure name which must be referenced as a function. F requires an
array of five FLOAT DECIMAL(7) values as its argument and returns a
FLOAT DECIMAL(7) result.

Procedures, other than external procedures that are not part of the
compiled module, are declared by their PROCEDURE statement and cannot
be declared in a DECLARE statement.

Failure to declare an external procedure that is part of another
program module results in error messages from the compiler.

The ENTRY attribute together with the VARIABLE attribute can be used to
declare variables whose values are entry values. The ENTRY attribute
can be used in a RETURN attribute to indicate that a function returns
entry values. Example:

A: PROCEDURE;

DECLARE E ENTRY VARIABLE;

E = A;

E is an entry variable that is capable of being assigned any entry
value. The assignment assigns the procedure name A as the value of E.
A subsequent call to E would call A.

Any attributes specified within an ENTRY attribute and any RETURNS
attribute specified for an entry variable have no effect on the values
that can be assigned to the variable. However, when the entry variable
is called, the value that it currently holds must designate a PROCEDURE
statement whose parameters and RETURNS option match those given in the
declaration of the entry variable.

In our previous example, a program that calls E as a function or calls
E with arguments is invalid and produces unpredictable results.

Like a label value, an entry value consists of two parts. The first
part designates a PROCEDURE statement and the second part designates a
stack frame of the block that immediately contains the PROCEDURE
statement. An ENTRY value that designates an external procedure has a
null second part. An entry value is invalid and must not be used if
its stack frame designator refers to a block that is no longer active.

Entry values may be assigned, compared for equality or inequality,
passed as arguments, and returned from functions but no calculations or
conversions can be performed on them. They cannot be transmitted in
stream I/O.

Unless a programmer uses entry variables or entry parameters and also

3 - 1 5 A p r i l 1 9 8 0

S E C T I O N 3 I D R 4 0 3 1

uses recursive procedures, he can ignore the entire discussion of the
second part of an entry value and can consider an entry value to be
simply a designator of an entry point. The discussion that follows
explains the way in which the second part of an entry value is
determined and how it is used.

If a procedure references variables that are declared in its containing
procedure and those variables are allocated in that procedure's stack
frame, the inner procedure must be given a designator to the outer
procedure's stack frame in order for it to be able to access the outer
procedure's variables. The second part of an entry value is this stack
frame designator.

Except when the outer procedure has been activated recursively, only
one stack frame for the outer procedure exists and that is the one that
is always used when the inner procedure references variables declared
in the outer procedure.

If the outer procedure has been activated recursively, the entry value
used to call the inner procedure determines which stack frame is to be
used when the inner procedure references the outer procedure's
variables. Example:

A: PROCEDURE RECURSIVE;
DECLARE X FIXED BINARY(15);
DECLARE E ENTRY VARIABLE STATIC;
IF FIRSTJTIME

THEN E = B;
ELSE CALL F;

CALL G;

B: PROCEDURE;

X = 5;

Assume that A calls G, and that G calls A, then A calls F, and F calls
the entry value held by E. When E is called, it results in an
activation of B because B was assigned to E. When that activation of B
references X, two stack frames containing an instance of X exist. Two
stack frames exist because two calls of A are still active. However,
because the first of those two activations of A assigned B to E, E
contains a designator to the first stack frame of A. Consequently, B
assigns to the first instance of X. If B were called directly from A,
B would always use the most recent stack frame of A when referencing X.

An older stack frame is only used when an entry name is assigned to an
entry variable or passed as an argument to an entry parameter. When
the entry name is thus passed or assigned, the current stack frame of
its containing block is assigned as the second component of the entry
value produced by that assignment.

R E V . 0 3 - 1 6

I D R 4 0 3 1 D A T A

If the procedure name being assigned or passed as an argument is not
declared within the block that is assigning or passing it, but is
declared in a containing block, the containing block's stack frame is
found using the same principle as was used to find X in our example.
Once found, a designator to that stack frame is assigned as part two of
the entry value.

Each stack frame for a block A has a designator to a stack frame of the
block that contains A. That designator is the designator which was
supplied as the second part of the entry value used to activate A.
Unless the activation of A was the result of calling an entry variable
or entry parameter and unless recursion has been used, the stack frame
thus designated is the most recent instance of the block immediately
containing A.

FILE DATA

A file value designates a file control block that can be opened or
closed and which can thereby be connected to various files and devices
known to the operating system. Example:

DECLARE F FILE;

F is a file constant that designates a file control block. That file
control block may be opened, closed and used to perform I/O on files
and devices known to the operating system. See Section 2 for a
discussion of PL1G I/O.

A file variable is a variable that is capable of being assigned any
file value, and it is declared using both the FILE and VARIABLE
attributes. Example:

DECLARE G FILE VARIABLE;
DECLARE F FILE;

G = F;

G is a file variable and is assigned the value of the file constant F.
After the assignment, operations on G are equivalent to operations on F
because they both designate the file control block belonging to F.

File values may be assigned, compared for equality or inequality,
passed as arguments, and returned from functions, but no calculations
or conversions can be performed on them. They cannot be transmitted by
stream I/O.

- 1 7 A p r i l 1 9 8 0

S E C T I O N 3 I D R 4 0 3 1

ARRAYS

An array is an ordered set of values all having the same data type.
Elements of an array are referenced by their position within the array.
For this purpose, each array has a specified number of dimensions and
each dimension has a specified lower and upper bound. Examples:

DECLARE A(1:4) FIXED BINARY(15);

DECLARE B(0:3,0:5) FLOAT BINARY(23);

DECLARE C(-2:10) CHARACTER(5);

DECLARE D(25,4,2) POINTER;

A is a one-dimensional array capable of holding fixed-point binary
values. The lower bound is 1, the upper bound is 4, and the number of
elements is four.

B is a two-dimensional array capable of holding floating-point binary
values. Both lower bounds are zero, and the upper bounds are 3 and 5.
Therefore, B has four rows of six columns each.

C is a one-dimensional array capable of holding character-string values
each of which has five characters. Its lower bound is -2 and its upper
bound is 10 giving it a total of 13 elements.

D is a three-dimensional array capable of holding pointer values.
Because no lower bounds are given, they are assumed to be 1. The array
has a total of 200 elements organized as 25 sets of four rows, each of
which has two columns.

As is indicated by these examples, array elements are stored in
row-major order. That means they are stored such that when accessed in
the order in which they are stored, the rightmost subscript varies most
rapidly and the leftmost subscript varies least rapidly.

The maximum number of dimensions is eight, but the maximum values of
the bounds depend on the implementation.

The bounds of AUTOMATIC, DEFINED or BASED arrays may be specified by
integer-valued expressions as explained in Section 4. The bounds of
STATIC arrays must be integer constants. The bounds of parameter
arrays can either be integer constants or *. If an * is given as the
bound of a parameter array, it represents both the lower and upper
bound and means that the actual bounds of the corresponding array
argument are to be used as the bounds of the array parameter. Example:

R E V . 0 3 - 1 8

I D R 4 0 3 1 D A T A

DECLARE A(0:5) FIXED BINARY;
CALL P(A);

P: PROCEDURE(X);
DECLARE X(*) FIXED BINARY;

During the call of P, the bounds of X are (0:5) and any reference to X
is a reference to A.

Elements of an array are referenced using as many subscripts as the
array has dimensions. Example:

DECLARE A(-2:5,4,3) FIXED BINARY;

A reference to A(-2,l,l) is a reference to the first column of the
first row in the first set. A reference to A(3,2,l) is a reference to
the first column of the second row in the sixth set.

A subscript must be an integer valued expression. The use of
fixed-point fractions or floating-point values as subscripts produces
an error message from the compiler. However, such values can be
converted to integer values by use of the TRUNC, CEIL, FLOOR, or ROUND
bui l t - in funct ions.

Each subscript must lie within the range specified by its corresponding
lower and upper bound. Unless subscript range checking has been
requested, the compiler does not produce code to check the range of
subscript values. If checking is requested, any subscript that exceeds
its range results in a signal of the ERROR condition.

Entire arrays may be transmitted in stream or record I/O, passed as
arguments, and assigned to other arrays of the same size and shape, but
no conversions or calculations can be performed on entire arrays.
Subscripted references to array elements can be used in any context
that permits a variable reference.

STRUCTURES

A structure is a hierarchically ordered set of values that may be of
different data types. The immediate components of a structure are
called members of the structure. A structure that is itself a member
of another structure is called a substructure. A structure that is not
a substructure is called a major structure.

The hierarchical organization of a structure is specified by using
level-numbers as shown by the following example:

- 1 9 A p r i l 1 9 8 0

S E C T I O N 3 I D R 4 0 3 1

DECLARE 1 S,
2 A FIXED BINARY,
2 B FLOAT BINARY,
2 T,

3 P POINTER,
3 Q CHARACTER(10);

S is a major structure or level-one structure. All major structures
must have a level-number of one. The members of S are A, B, and T. T
is a substructure whose members are P and Q.

Members normally have a level-number that is one greater than their
containing structure. However, they may be given any level number that
is greater than the level-number of their containing structure but
which is not greater than the level-numbers of their fellow members.
Example:

DECLARE 1 S,
20 A FIXED BINARY,
20 B FLOAT BINARY,
20 T,

30 P POINTER,
30 Q CHARACTER(10);

This structure is equivalent to the previous example.

An entire structure may be transmitted in stream or record I/O, passed
as an argument, or assigned to another structure of identical size and
shape and having members of corresponding identical data types, but no
conversions or calculations can be performed on entire structures.

Members of structures can be referenced in any context that permits a
reference to a variable. If a member's name is not otherwise declared
in the same scope (that is: the block containing the reference, the
block containing the declaration of the member, or any intervening
block), the member may be referenced by its name alone.

The name of a member must be unique within its immediately containing
structure, but may be used as the name of members of other structures
or as the name of a nonmember. If a member's name has been used for
more than one object, each reference to the member must be qualified by
the name of its containing structure. If the containing structure's
name has been used for more than one object, the name of its containing
structure must be used as a qualifier. The names of major structures
cannot be reused, only member names can be reused. Example:

DECLARE A FIXED BINARY;
DECLARE 1 S,

2 A FLOAT BINARY,
2 T,

3 A POINTER;

A reference to A is a reference to the fixed-point variable. A
reference to S.A is a reference to the floating-point variable. A

R E V . 0 3 - 2 0

I D R 4 0 3 1 D A T A

reference to T.A or S.T.A is a reference to the pointer variable.

A good programming practice is always to use the major structure name
as a qualifier and avoid using the same member name more than once
anywhere within the major structure or any contained structures. See
Section 6 for more information on the resolution of references.

ARRAYS OF STRUCTURES

Structures, like other variables, can be declared as arrays and may
contain arrays as members. Example:

DECLARE 1 S(5),
2 A FIXED BINARY,
2 B(4) FLOAT BINARY,
2 T(3),

3 P POINTER,
3 Q(6) CHARACTER(10);

S is an array of structures that contains five structures. Each
structure contains a fixed-point member followed by an array of four
floating point values, followed by an array of substructures containing
three substructures. Each substructure contains a pointer variable
followed by an array of six character-string variables.

The entire structure contains five occurrences of A, 20 occurrences of
B, 15 occurrences of T, 15 occurrences of P, and 90 occurrences of Q.

Each member of an array of structures is an array because there exist
as many instances of the member as there are elements in the array. If
a member is an array in its own right because it has its own dimension
information (as do B, T, and Q in our example), the array inherits the
additional dimensions from its containing structures. In our example,
Q is a three-dimensional array whose bounds are (5,3,6).

Any member of a dimensioned structure is an array and must be
referenced using a subscript for each of its dimensions. The
subscripts may be written anywhere within the structure qualified
reference, but it is a good practice to write each subscript
immediately following the name to which it applies.

Using our previous example, S(K).A is a reference to the Kth element of
A; S(K).B(J) is equivalent to B(K,J); S(K).T(J).Q(I) is equivalent to
S.T.Q(K,J,I) or to S.T(K,J).Q(I), or S(K,J,I).T.Q, etc.

Members of dimensioned structures can be used as arrays only in stream
I/O and as arguments to array parameters whose bounds have been
specified as asterisks. They cannot be assigned, used in record I/O,
used in ADDR or DEFINED, or passed to parameters with constant bounds.

Subscripted references to members of dimensioned structures can be used
in any context that permits a variable reference.

- 2 1 A p r i l 1 9 8 0

I D R 4 0 3 1 S T O R A G E C L A S S E S

SECTION 4

STORAGE CLASSES

STORAGE CLASSES

Every variable has a storage class that determines how and when storage
is allocated for the variable. Except for parameters, each variable
can be declared to have one of these storage classes:

AUTOMATIC
STATIC
BASED
DEFINED

If no storage class is specified for a variable that is not a
parameter, AUTOMATIC is supplied by default. A parameter is recognized
as having the parameter storage class by its appearance in a PROCEDURE
statement.

The declared length of a string variable and the bounds of an array
variable are called extents. The extents of a variable determine the
variable's storage size and are evaluated when storage is allocated for
the variable. The permitted forms for extents differ for each storage
class and are described in the discussion of each storage class.

AUTOMATIC STORAGE

Storage is allocated for an automatic variable each time that the
procedure or the BEGIN block in which it is declared is activated.
Storage is allocated within the stack frame that represents that block
activation. If a block is activated recursively, each stack frame
contains an instance of all automatic variables declared in that block.

When a block activation terminates, its stack frame is removed from the
stack thus freeing the storage of all automatic variables allocated
within it. This normally occurs when a procedure returns to its caller
or when a BEGIN block executes its END statement. However, it also
occurs when a GOTO statement transfers control back to a previous block
activation. In that case, all block activations between the block to
which control is returned and the current block are terminated and
their stack frames are popped from the stack.

Extents of automatic variables may be specified as integer-valued
expressions and must not contain references to other automatic and
defined variables declared in the same block.

Extent expressions of automatic variables are evaluated each time the
containing block is activated. Their values are saved in the stack
frame and effectively fix the size of the automatic variable for that
block activation. Subsequent assignment to a variable used as an

April 1980

S E C T I O N 4 I D R 4 0 3 1

extent does not affect the size. Example:

DECLARE A(N) FIXED;

N = 10;

The size of A is determined upon entry to the containing block by
evaluating N and storing its value in the stack frame. The assignment
to N does not change the size of A. Upon entry to the block, N must
have a correct value and N must not be an automatic or defined variable
declared in this block. Use of the HBOUND built-in function within
this block activation would return the original value of N that was
saved in the stack frame.

STATIC STORAGE

Storage is allocated for a static variable by the compiler and/or
loader prior to program execution. Storage remains al located
throughout program execution.

Only one instance of a static variable's storage is allocated
regardless of whether or not it is declared in a recursive procedure.
Values assigned to a static variable are retained between calls to the
variable's procedure.

The INITIAL attribute explained in Section 5 can be specified in the
declaration of a static variable.

All extents specified for a static variable must be constants.

Static variables can be declared with the INTERNAL or EXTERNAL
attribute. If neither is specified, INTERNAL is assumed.

An internal static variable is known in its containing block and all
contained blocks, except blocks in which the same name is redeclared.
This is the normal scope rule that applies to all other variables.

An external static variable is known in its containing block and all
contained blocks, except blocks in which the same name is redeclared.
However, all declarations of the same name that have the EXTERNAL
attribute share the same storage and must specify identical attributes
including any initial values. External static variables are known and
shared by all program modules in a manner similar to the common
variables of FORTRAN, except that each external static variable is
shared independently of others.

REV. 0

I D R 4 0 3 1 S T O R A G E C L A S S E S

BASED STORAGE

A based variable differs from all other variables in the sense that it
is a template or description of storage, but does not have a block of
storage of its own. Because it has no storage, it has no address.

In order to reference storage using a based variable, we must supply
the address of the storage we want to reference. The based variable
serves as a description of the storage but a pointer value must be used
to supply the address of that storage. Example:

DECLARE X CHARACTER(30) BASED;
DECLARE P POINTER;

P->X = 'ABC-

Assume that we have assigned an address or pointer value to P. The
reference P->X is called a pointer-qualified reference and it enables
us to assign to the storage addressed by P as if that storage contained
a character-string variable like X.

There are two ways in which we can obtain a pointer value: the ADDR
built-in function can calculate the address of a variable's storage and
return it, or an ALLOCATE statement can dynamically allocate a block of
storage and give us a pointer to it. Example:

DECLARE X(5) FLOAT BINARY;
DECLARE Y FLOAT BINARY BASED;
DECLARE P POINTER;
DECLARE K FIXED BINARY(15)

P = ADDR(X(K));
P->Y = 10;

The ADDR built-in function calculates the address of X(K) and assigns
it to the pointer P. The second assignment assigns 10 to the storage
addressed by P and effectively assigns 10 to X(K).

The use of based variables to access another variable's storage is
generally not a good programming practice because when reading the
program it may be difficult to remember just what storage a given
pointer addresses. There is also a danger that the based variable does
not accurately describe the storage addressed by the pointer. Our
previous example would be incorrect if Y were declared with a data type
that differed from that declared for X. See the discussion later in
this section for a treatment of storage sharing by based variables.

The ALLOCATE statement uses a based variable to allocate a block of
storage that can later be accessed by a based variable together with
the pointer returned by the ALLOCATE statement. Example:

April 1980

S E C T I O N 4 I D R 4 0 3 1

DECLARE X(10) FLOAT BASED;
DECLARE (P,Q) POINTER;

ALLOCATE X SET(P);

ALLOCATE X SET(Q);

The first ALLOCATE statement allocates a block of storage of sufficient
size to hold an array of 10 floating-point values and assigns a pointer
to that block of storage to P. P->X thereafter is a reference to that
block of storage as an array of 10 floating-point values. The second
ALLOCATE statement allocates a similar block of storage and assigns a
pointer to the block as the value of Q. Q->X can then be used to
reference the second block and P->X can be used to reference the first
block.

Based variables can be subscripted just like any other variable. If we
want to refer to the elements of our two arrays, we can write
references like P->X(K) or Q->X(5). Since the pointer variable may
also be an array it can be subscripted. Example:

DECLARE P(3) POINTER;
DECLARE X(10) FLOAT BASED;

ALLOCATE X SET(P(K));

P(K)->X is a valid reference to the entire array of floating-point
values, and P(K)->X(J) is a valid reference to the Jth floating-point
value. P->X is invalid because the pointer must not be an array value.

The ALLOCATE statement is the only context in which a based variable
can be used without an explicit or implicit pointer qualifier. In this
context, the based variable is used to describe how much storage is to
be allocated.

Implicit pointer qualification is a short-hand notation that can be
used in cases where all or nearly all references to a based variable
use the same pointer. Example:

DECLARE X(10) FLOAT BASED(P);
DECLARE P POINTER;

ALLOCATE X SET(P);

Because X was declared to be based on P, unqualified references to X

R E V . 0 4 - 4

I D R 4 0 3 1 S T O R A G E C L A S S E S

such as X(K), X(5) or X are implicitly qualified by P and are
equivalent to P->X(K), P->X(5), and P->X. Any explicit qualification
such as Q->X may be used and is unaffected by the specification of P in
BASED(P).

The extents of a based variable may be specified as integer-valued
expressions. The extents are evaluated for each reference to the based
variable and are not captured when storage is allocated by an ALLOCATE
statement. It is the programmer's responsibility to ensure that any
extents accurately describe the storage being referenced. Example:

DECLARE X(N) CHARACTER(1) BASED;

N = 10;
ALLOCATE X SET(P);

N = M;
P->X(5) = 'A';

The ALLOCATE statement allocates an array of 10 elements. The value of
M must be greater than or egual to 5 and less than or equal to 10 or
the reference to P->X(5) is invalid.

A block of storage previously allocated by an ALLOCATE statement can be
freed by a FREE statement. Example:

FREE P->X;

Once freed, the storage can no longer be accessed and any attempt to
use a pointer such as P that points to the block produces unpredictable
resu l t s .

When used with the ALLOCATE statement, based variables are a powerful
tool for use in applications where the number of instances of a table
or record are not known upon entry to a block and must be determined as
the program executes. List structures consisting of based structures
linked together via pointers provide a very high level of dynamic data
structure for use in these situations. See the example of block
activation and recursion in Section 2.

DEFINED STORAGE

A variable declared with the DEFINED attribute is an alternative
description of the variable specified in the DEFINED attribute.
Example:

DECLARE X CHARACTER(5) DEFINED(A);
DECLARE A(5) CHARACTER (1) ;

X is a character-string variable whose values are all of length 5. It
shares storage with and is an alternative description of the array A.

April 1980

S E C T I O N 4 I D R 4 0 3 1

For example:

X = 'abode';

assigns 'a' to A(l) , 'b' to A(2) , and so on.

The extents of a defined variable may be integer-valued expressions.
They are evaluated upon block entry and stored in the stack frame just
like the extents of automatic variables. Such an extent expression
must not contain a reference to any automatic or defined variable
declared in the same block.

For additional information on defined variables, see the discussion in
this section of the methods for giving alternative descriptions of
storage.

PARAMETERS

A parameter has no storage of its own, but shares storage with its
argument. Example:

DECLARE X FLOAT;
CALL P(X);

P: PROCEDURE (Y);
DECLARE Y FLOAT;

During the call to P, X and Y describe the same storage. Where this
occurs, the argument is said to have been passed by-reference.

If the argument is an expression, function reference, built-in function
reference, constant, parenthesized variable reference, or a reference
to a variable whose data type does not match that of the parameter, the
argument is copied to a temporary block of storage in the caller's
stack frame and is said to be passed by-value. In this case, the
parameter is a description of that temporary storage.

The extents of a parameter can either be integer constants or
asterisks. If they are integer constants, any argument that is to be
passed by-reference must have identical constant extents. If the
parameter's extents are asterisks, its corresponding argument may have
extents of any value. In this case, the extents of the parameter are
those of its corresponding argument. Example:

DECLARE A(10) FLOAT;
DECLARE B(25) FLOAT;

R E V . 0 4 - 6

I D R 4 0 3 1 S T O R A G E C L A S S E S

CALL P(A);

CALL P(B);

P: PROCEDURE(X);
DECLARE X(*) FLOAT;

During the first call, the extents of X are (1:10). During the second
call, they are (1:25).

A character or bit string parameter with a constant length may be
passed string arguments of variable length or differing constant
length, but all such arguments are passed by-value and effectively
converted to the length of the parameter.

An array parameter with constant extents can only be passed array
arguments that have identical constant extents and which have an
identical data type. A parameter structure can only be passed a
structure or substructure of identical size, shape, and component data
types. This means that array or structure arguments cannot be passed
by-value.

The precision of arithmetic data is part of its data type. This means
that a FLOAT DECIMAL(7) variable cannot be passed by-reference to
anything except a FLOAT DECIMAL(7) parameter. VARYING and ALIGNED as
well as the declared string length are part of a string variable's data
type and must match those of the corresponding parameter. A picture
variable can be passed by-reference only if the corresponding parameter
has an identical picture.

If a reference to a variable appears as an argument enclosed within
parentheses, it is considered to be an expression and is passed
by-value. That is, it is assigned to a temporary block of storage that
has the data type of the corresponding parameter.

If a reference to a variable appears as an argument and does not match
the data type of the corresponding parameter, it is passed by-value
unless it is a reference to an entire array or structure. The latter
cases are invalid and produce an error message from the compiler. The
former case produces a warning message that can be suppressed by
enclosing the variable reference in parentheses. Example:

CALL P(A,(B));

A is passed by reference if it matches its corresponding parameter and
is passed by-value if it does not. B is always passed by-value.

April 1980

S E C T I O N 4 I D R 4 0 3 1

STORAGE SHARING

PL1G provides two storage classes, BASED and DEFINED, that are
explicitly designed to permit a block of storage to be shared by
several variables.

In all cases of storage sharing by BASED or DEFINED variables, storage
can be shared only if:

• The data types of all variables sharing storage are identical,
or

• All variables sharing storage are nonvarying character strings,
or

• All variables sharing storage are unaligned bit-strings.

The latter two cases are called string overlays and permit the sharing
variables to be arrays of any dimensionality and extents, or structures
containing only the required type of string data, or scalar string
variables. These dissimilar variables may share storage using the
string overlay case because storage is known not to contain any gaps or
extraneous information - it contains only characters in the second case
and contains only bits in the third case. Example:

DECLARE X(4,4) CHARACTER(1);
DECLARE Y(16) CHARACTER(1) DEFINED(X);
DECLARE Z CHARACTER(5) DEFINED(X);
DECLARE 1 S BASED,

2 A CHARACTER(8),
2 B CHARACTER(8);

X has a block of storage containing 16 characters that is entirely
shared by Y. Z shares the first five of these characters. S could be
used to access all 16, while S.A could be used to access the first
eight, and S.B could be used to access the last eight.

A based character string of more than 16 characters could not be used
to access the storage, but one of 16 or fewer could be used.

A similar example could be constructed using all unaligned BIT data.

Storage sharing of other data types requires that the data types
exactly match, but an element of an array may be shared with a nonarray
variable of the same data type. Likewise, a member of a structure may
be shared with a nonmember of the same data type.

Arrays may share storage with other arrays only if they have the same
data type, same number of dimensions, and same extents. Structures may
share storage with other structures only if they are left-to-right
equivalent to the structure whose storage is being shared.

Left-to-right equivalent means that the sharing structures must be
valid descriptions of the left part of the storage being shared. In

REV. 0

IDR4031 STORAGE CLASSES

order to be a valid description of the left part of storage, they must
have identical members up to and including all members contained
anywhere within the last level-two item being shared. If any part of a
level-two item is to be shared, all of it must be shared. Example:

DECLARE 1 S,
2 A,
2 B,

3 C,
3 D,

2 E;

DECLARE 1 T BASED,
2 A,
2 B,

3 C,
3 D;

DECLARE 1 U BASED,
2 A,
2 B,

3 C;

A reference to T.B.C is a valid reference to S.B.C, but a reference to
U.B.C is not because the declaration of U does not describe all of the
level-two item S.B.

A picture variable can only share storage with other pictured variables
that have identical pictures.

As is the case for argument/parameter matching, the ALIGNED and VARYING
attributes as well as the declared length of a string variable are part
of its data type and must match, unless the strings qualify for string
overlay sharing.

The base, scale, and precision of arithmetic variables must always
match if they are to share storage.

April 1980

IDR4031 DECLARATIONS AND ATTRIBUTES

SECTION 5

DECLARATIONS AND ATTRIBUTES

DECLARATIONS

Each name, except the name of a built-in function, must be declared
either by a DECLARE statement or by a label prefix.

Each declaration has a scope or region of the program in which a
reference to the name is associated with the declaration. The scope of
a declaration includes the block in which it is declared and all
contained blocks except blocks in which the name has been redeclared.

A name declared with the EXTERNAL attribute has the same scope rule as
any other name, except that the object identified by that name is
unique throughout the entire program. All declarations of a given name
that have the EXTERNAL attribute identify the same object. Only files,
static variables, and names of external procedures can have the
EXTERNAL attribute. Files and procedures acquire the attribute by
default, but static variables have internal scope unless they are
explicitly declared with the EXTERNAL attribute.

A given name cannot be declared more than once within the same block,
unless it is declared as the name of a structure member. In that case,
the name may be redeclared within the same block providing that no two
immediate members of the same structure have the same name and
providing that the name is not declared more than once as a nonmember
within the same block.

See Section 2 for a discussion of block structure and scope.

LABEL PREFIXES

A label prefix declares a name as a procedure name, format name, or
statement label depending on the type of statement to which the prefix
is attached.

A label prefix on a PROCEDURE statement declares a name as a procedure
name. The name is declared in the block which contains the PROCEDURE
statement, not the block defined by the PROCEDURE statement. The
declaration contains a description of each parameter referenced by the
PROCEDURE statement, as well as the data type specified by any RETURNS
option of the PROCEDURE statement. Example:

E: PROCEDURE(A,B) RETURNS(POINTER) ;
DECLARE A FIXED BINARY;
DECLARE B FLOAT DECIMAL;

E is declared as a procedure name in the block which contains the

5 - 1 A p r i l 1 9 8 0

SECTION 5 IDR4031

PROCEDURE statement. The attributes of that declaration
RETURNS(POINTER) and ENTRY(FIXED BINARY, FLOAT DECIMAL).

are

The label prefix of
subscripted.

a PROCEDURE or FORMAT statement cannot be

The label prefix on a FORMAT statement declares a name as a format
name. The name is declared in the block that contains the FORMAT
statement. A format name is not a statement label and cannot be used
in a GOTO statement. It can only be used in a format. See Section 9
for a discussion of FORMAT statements.

A label prefix attached to any other statement declares a name as a
statement label. The declaration is established in the block that
contains the statement to which the prefix is attached.

A label prefix attached to a BEGIN statement is declared in the block
which contains the BEGIN statement, not the block defined by the BEGIN
statement.

Label prefixes attached to statements other than PROCEDURE or FORMAT
may be subscripted by a single optionally signed integer constant.
Within a given block, all occurrences of a given name used in this
manner must be subscripted, and all such prefixes collectively
constitute a declaration of the name as an array of statement labels.
Example:

GOTO CASE(K);
CASE(l):

CASE (2) :

CASE(3)

CASE (6)

CASE is declared as an array of statement labels whose bounds are (1:6)
and whose 4th and 5th elements are undefined.

Use of elements 4 or 5 produces unpredictable results. It is a poor
programming practice to define these arrays such that they have
undefined elements.

An array of statement labels cannot be used as an array value, but its
elements can be used in any context that permits a statement label.

REV. 0

IDR4031 DECLARATIONS AND ATTRIBUTES

Names declared by a label prefix in a given block cannot also be
declared in a DECLARE statement in the same block, except that the
names may be used as the names of members of structures. This means
that procedure names, format names, or statement labels cannot also be
declared by a DECLARE statement, except as the names of structure
members.

Names of external procedures that are part of another program module
must be declared by a DECLARE statement if they are to be referenced by
the current program module. Only external procedure names can be
declared by a DECLARE statement.

DECLARE STATEMENTS

A DECLARE statement declares one or more names by giving the attributes
or properties of the named objects. A DECLARE statement is not an
executable statement and cannot have a label prefix. It may appear
anywhere within a procedure or BEGIN block, except as the THEN clause
or ELSE clause of an IF statement or as an on-unit of an ON statement.

It is good programming practice to place all DECLARE statements
belonging to a given block at the beginning of that block, rather than
mixing them with executable statements. This makes them easy to find
when reading the program.

Recommended Forms

The following paragraphs describe the recommended forms of the DECLARE
statement.

DECLARE name al a2 ... an;

name is the declared name and al through an are attributes. Examples:

DECLARE A FIXED BINARY(15);

DECLARE B CHARACTER(10) VARYING STATIC INITIAL('ABC);

DECLARE C DIMENSION(5) FLOAT DECIMAL(7);

The last example could also be given without the keyword DIMENSION by
w r i t i n g :

DECLARE C(5) FLOAT DECIMAL(7);

When several names are to be given the same attributes, the names can
be enclosed in parentheses.

DECLARE (name-1, name-2, ... ,name-n) al a2 ... an;

5 " 3 A p r i l 1 9 8 0

S E C T I O N 5 I D R 4 0 3 1

Each name is declared to have all of the attributes al through an
Examples:

DECLARE (A,B,C) FIXED BINARY(15);

DECLARE (P,Q) POINTER STATIC INITIAL(NULL);

DECLARE (X,Y)(5) FLOAT DECIMAL(7);

The last example is equivalent to:

DECLARE (X,Y) DIMENSIONS) FLOAT DECIMAL(7) ;

The bounds must be the first attribute in an attribute list if they
appear without the keyword DIMENSION.

A structure should be declared using this general form:

DECLARE 1 structure_name al a2 ... an,
2 member_name_l al a2 ... an,
2 member name 2 al a2 ... an,

2 member_name_m al a2 ... an;

Each member should have a level-number that is one greater than the
level-number of its containing structure. The only attributes given to
the structure are storage class and DIMENSION. Each member is declared
to have all attributes following its name up to the next comma or up to
the end of the statement. Example:

DECLARE 1 S STATIC,
2 A(5) FLOAT DECIMAL(7),
2 B FIXED BINARY(15),
2 C,

3 D POINTER,
3 E CHARACTER(10) INITIAL('ABC');

S is a static structure with members A, B and C. C is a substructure
with members D and E. Initial attributes can be given to elementary
members of static structures, but not to structures.

REV. 0

IDR4031 DECLARATIONS AND ATTRIBUTES

DECLARE Statement General Form

The general form of the DECLARE statement is:

DECLARE dl, d2, ... ,dn;

where each d is:

k name al a2 ... an

or

k (dl, d2, ... ,dn) al a2 ... an

Where k. is an optional level-number, each a is an attribute, and name
is a name to be declared. Examples:

DECLARE ((A FIXED, B FLOAT) DECIMAL, C BIT) STATIC;

DECLARE 1 S STATIC, 2 (A FIXED, B FLOAT) INITIAL(0);

DECLARE statements that contain parenthesized lists of names are called
factored declarations. A factored declaration is transformed into a
nonfactored declaration by copying the level-number and attribute list
of the innermost set of parentheses onto each name contained within the
parentheses, removing the parentheses, and repeating this process with
the next set of parentheses.

After defactoring, our previous examples are:

DECLARE A FIXED DECIMAL STATIC-
DECLARE B FLOAT DECIMAL STATIC-
DECLARE C BIT STATIC-

DECLARE 1 S STATIC,
2 A FIXED INITIAL(0),
2 B FLOAT INITIAL(0);

Because factored declarations, other than recommended Form 2, are
difficult to read, their use is not recommended.

If defactoring produces more than one level-number for a given name,
even if the level-numbers are equal, the factored declaration is
invalid and causes the compiler to issue an error message.

The specification of duplicate attributes containing more than a simple
keyword is also invalid, even when the attributes are exact duplicates.

DECLARATION DEFAULTS

If the attributes specified for a name are incomplete, additional
attributes are supplied using these rules:

April 1980

S E C T I O N 5 I D R 4 0 3 1

If BINARY or DECIMAL is specified without FIXED or FLOAT, FIXED
is supplied.

If FIXED or FLOAT is specified without BINARY or DECIMAL, BINARY
is supplied.

If STATIC is specified without INTERNAL or EXTERNAL, INTERNAL is
supplied.

If EXTERNAL is specified without a storage class and the
declared name is not an entry or file constant, STATIC is
supplied.

If the name is the name of a nonparameter variable which is not
a member of a structure and no storage class was specified,
AUTOMATIC is supplied.

If BIT or CHARACTER is specified without a length, a length of
one is supplied.

I f p rec is ion is no t spec ified fo r a r i thmet ic da ta , an
implementation-defined precision is supplied.

If a storage class, array bounds, or member's level-number is
specified with FILE or ENTRY, VARIABLE is supplied. VARIABLE is
also supplied for parameters that have FILE or ENTRY specified.

If FILE or ENTRY is specified and VARIABLE is not specified and
not supplied by the previous rule, EXTERNAL is supplied. In
this case, the named object is a constant rather than a
var iab le .

ATTRIBUTE CONSISTENCY

After default attributes have been supplied, each declaration is
checked by the compiler for consistency and completeness.

If no data type is specified, the declaration is invalid and
incomplete. The compiler issues an error message and supplies a type
of FIXED BINARY.

A declaration is inconsistent and invalid if it specifies more than one
data type, more than one storage class, or violates any restrictions
described for each attribute later in this section.

Valid Data Types:

FIXED BINARY(p)
FIXED DECIMAL(p[,q])
FLOAT BINARY(p)
FLOAT DECIMAL(p)
PICTURE
CHARACTER(n) [VARYING]

REV. 0

IDR4031 DECLARATIONS AND ATTRIBUTES

BIT(n) [ALIGNED]
POINTER
LABEL
ENTRY [RETURNS] [VARIABLE]
FILE [VARIABLE]
BUILTIN
st ruc ture

Valid Storage Classes:

AUTOMATIC
BASED or BASED(pointer-reference)
STATIC INTERNAL [INITIAL]
STATIC EXTERNAL [INITIAL]
DEFINED(reference)
parameter
member of structure [INITIAL only if STATIC]

A name declared BUILTIN cannot have any other attribute.

A name declared FILE or ENTRY but without VARIABLE, is a named
constant, not a variable, and its scope is external. Note that the
presence of a storage class, an array bound, or a member's level-number
causes the VARIABLE attribute to be supplied by default to declarations
containing ENTRY and FILE.

ATTRIBUTES

The attributes which are permitted in a DECLARE statement are described
in this section. They are listed in alphabetical order for easy
reference. The discussion of each attribute assumes that the
attributes have been made complete by the application of defaults as
described in this section.

ALIGNED

ALIGNED is an optional part of the bit-string data type specification.
Its presence allows an implementation to align the data on a convenient
storage boundary and to use more bits of storage than are specified by
the bit-string's declared length. See Section 3 for a discussion of
bit-str ing data.

AUTOMATIC

AUTOMATIC is a storage class attribute and specifies that the declared
name is an automatic variable. See Section 4 for a discussion of
automatic storage.

April 1980

S E C T I O N 5 I D R 4 0 3 1

BASED or BASED(r)

BASED is a storage class attribute and specifies that the declared name
is a based variable. In the second form, r is a reference to a pointer
variable or is a pointer-valued function reference and serves as the
default or implicit pointer qualifier for unqualified references to the
name. See Section 4 for a discussion of based storage.

BINARY (p)

BINARY is part of an arithmetic data type and specifies that the base
is binary. The precision (p) may be supplied by this attribute or by
the FIXED or FLOAT attribute, but it cannot be specified twice. If not
specified, an implementation-defined default precision is supplied
(refer to Section 3).

If BINARY is specified without FIXED or FLOAT, FIXED is supplied by
default. If either FIXED or FLOAT is specified without BINARY or
DECIMAL, BINARY is supplied by default.

When used with FIXED, BINARY specifies integer arithmetic values which
contain at least p binary digits.

When used with FLOAT, BINARY specifies floating-point arithmetic values
which have a mantissa that contains the equivalent of at least p_ binary
d i g i t s .

See Section 3 for a discussion of arithmetic data.

BIT(n)

BIT is part of the bit-string data type specification. The length n is
an extent expression or integer constant depending on the storage class
of the declared name. A default length of one is supplied if no length
is specified. See Section 4 for a discussion of storage classes and
Section 3 for a discussion of bit-string data.

BUILTIN

BUILTIN specifies that the declared name is a built-in function.
Unless an empty argument list is used in a reference to an argumentless
built-in function, the function must be declared with the BUILTIN
attribute. BUILTIN may be used to redeclare a built-in function name
that was declared as something else in an outer block. The declared
name must be one of the names given in Section 10.

REV. 0

IDR4031 DECLARATIONS AND ATTRIBUTES

CHARACTER (n)

CHARACTER is part of the character-string data type specification. The
length n is an extent expression or integer constant depending on the
storage class of the declared name. A default length of one is
supplied if no length is specified. See Section 4 for a discussion of
storage classes and Section 3 for a discussion of character-string
data.

DECIMAL (p,q) or DECIMAL (p)

DECIMAL is part of an arithmetic data type and specifies that the base
is decimal. The precision (p,_f) may be supplied by this attribute or
by the FIXED or FLOAT attribute, but cannot be specified twice. If not
specified, an implementation-defined default precision is supplied.

If DECIMAL is supplied without FIXED or FLOAT, FIXED is supplied by
default. If FIXED or FLOAT is specified without BINARY or DECIMAL,
BINARY is supplied by default.

When used with FIXED, DECIMAL specifies fixed-point arithmetic values
which contain at least p decimal digits. If c[is specified, (p-q)
digits are integral digits and £ digits are fractional digits. If q is
omitted, the values are integers containing at least p decimal digits.

When used with FLOAT, DECIMAL specifies floating-point arithmetic
values whose mantissa contains the equivalent of at least p decimal
digits. In this case, c[cannot be specified.

See Section 3 for a discussion of arithmetic data.

DEFINED(r)

DEFINED is a storage class attribute and specifies that the declared
name is a defined variable which shares storage with the variable
referenced by jr. See Section 4 for a discussion of defined storage.

DIMENSION(bl, b2, ... ,bn)

DIMENSION specifies that the declared name is an array. This attribute
is normally written immediately following the variable's name and is
written without the keyword DIMENSION. Example:

DECLARE X(5) FLOAT;
DECLARE Y DIMENSION(5) FLOAT;

Both X and Y are arrays of 5 floating-point values.

Each b represents one dimension and specifies a lower and upper bound
for that dimension. Each b has one of these forms:

April 1980

S E C T I O N 5 I D R 4 0 3 1

F o r m D e fi n i t i o n
* used only for parameters, an asterisk specifies that

both the upper and lower bound of this dimension are
to be taken from the corresponding array argument.

lb:hb lb is an extent expression or optionally signed
integer constant depending on the storage class of
the array. It specifies the lower bound of this
dimension, hb is also either an extent expression
or an integer constant depending on the storage
class and it specifies the upper bound of this
dimension.

hb to is an extent expression or an integer constant
giving the upper bound of this dimension. The lower
bound is assumed to be one.

The DIMENSION attribute cannot be specified for named constants such as
FILE or ENTRY. It can only be specified for variables.

DIRECT

DIRECT is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
DIRECT attribute. An attempt to open a file declared as DIRECT with
attributes that conflict with the DIRECT attribute will result in a
signal of the ERROR condition. DIRECT cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

ENTRY(pi, p2, ... , pn)

ENTRY is a data type attribute. If used without the VARIABLE
attribute, it specifies that the declared name is the name of an
external procedure. In that case, each jo must be a list of attributes
that is identical to the attributes specified for the corresponding
parameter in that procedure. Example:

DECLARE E ENTRY(FIXED BINARY(15), POINTER);

This declaration would match an external procedure containing the
following statements:

E: PROCEDURE(X,Y);
DECLARE X FIXED BINARY(15);
DECLARE Y POINTER;

If ENTRY is used with VARIABLE, it specifies that the declared name is
a variable whose data type is entry and which can be assigned any
procedure name. However at the time when the entry variable is called,
it must hold an entry value which designates a PROCEDURE statement
whose parameters have attributes which are identical with the
corresponding attributes given by pi, p2, etc.

R E V . 0 5 - 1 0

IDR4031 DECLARATIONS AND ATTRIBUTES

If a PROCEDURE has one or more parameters which are structures, the
ENTRY attribute used to declare the procedure name must have a set of
a t t r i bu tes fo r each member o f the s t ruc tu re , i nc lud ing a l l
substructures. Example:

DECLARE E ENTRY(1, 2 FIXED, 2 FLOAT, POINTER);

E is a procedure which has two parameters, the first is a structure
having two members, and the second is a pointer. Note that the
parameter attributes given in the ENTRY attribute include the
level-numbers and attributes of all members as well as the level-number
and attributes of the parameter structure.

All string lengths or array bounds given in an ENTRY attribute must be
exactly the same as those given in the parameters of the PROCEDURE
statement. Programs that violate this rule produce unpredictable
resu l t s .

An attribute list in an ENTRY attribute is called a parameter
descriptor because it describes a parameter.

EXTERNAL

EXTERNAL specifies that the declared name has external scope. This
means that all declarations of this name anywhere in the program which
also have the EXTERNAL attribute identify the same object. The
EXTERNAL attribute can only be used with the STATIC attribute or in the
declaration of a file or entry name. If EXTERNAL is specified for a
variable and no storage class attribute is specified, STATIC is
supplied by default.

FILE

FILE is a data type attribute. If used without the VARIABLE attribute,
it specifies that the declared name is a file name which has external
scope by default and which has an associated file control block that
can be used to perform I/O on files and devices known to the operating
system.

If used with VARIABLE, FILE specifies that, the declared name is a file
variable that can be assigned file values. See Section 2 for a
discussion of PL1G I/O.

FIXED(p,g) or FIXED(p)

FIXED is part of an arithmetic data type and specifies that the values
have fixed-point scale. The precision (p,q) may be supplied by this
attribute or by the BINARY or DECIMAL attribute, but cannot be
specified twice. If not specified, an implementation-defined default
precision is supplied.

- 1 1 A p r i l 1 9 8 0

S E C T I O N 5 I D R 4 0 3 1

When used with BINARY, FIXED specifies integer arithmetic values that
contain at least p binary digits. In this case, q must not be
spec i fied .

When used with DECIMAL, FIXED specifies fixed-point arithmetic values
that contain at least p decimal digits. If a; is specified, p-q digits
are integral digits and c[digits are fractional digits. If 3 is
omitted, the values are integers containing at least p decimal digits.

See Section 3 for a discussion of arithmetic data.

FLOAT(p)

FLOAT is part of an arithmetic data type and specifies that the values
have floating-point scale. The precision (p) may be supplied by this
attribute or by the BINARY or DECIMAL attribute, but it cannot be
specified twice. If not specified, an implementation-defined default
precision is supplied.

If FLOAT is specified without BINARY or DECIMAL, BINARY is supplied by
default. If BINARY or DECIMAL is supplied without FIXED or FLOAT,
FIXED is supplied by default.

When used with BINARY, FLOAT specifies floating-point arithmetic values
whose mantissa contains the equivalent of at least p binary digits.

When used with DECIMAL, FLOAT specifies floating-point arithmetic
values whose mantissa contains the equivalent of at least p decimal
d ig i ts .

See Section 3 for a discussion of arithmetic data.

INITIAL(vl, v2, ... ,vn)

INITIAL specifies the initial value of a static variable or member of a
static structure. Each y may be an optionally signed arithmetic
constant preceded by an optional parenthesized integer constant
iteration factor which indicates that the value is to be used n times;
or y may be a character-string or bit-string constant; or y may be a
reference to the NULL built-in function and may have an optional
parenthesized iteration factor n. Examples:

INITIAL(1, 10, 5.2, (5)0)
INITIAL('abc', 'xyz')
INITIAL(NULL)

More than one initial value can be specified only if the declared name
is an array of m elements. In that case, exactly m initial values must
be specified and the values are assigned to the array in row-major
order. That is the order in which the elements of an array are
allocated storage. See Section 4 for a discussion of array storage.

R E V . 0 5 - 1 2

IDR4031 DECLARATIONS AND ATTRIBUTES

The INITIAL attribute can be specified only for arithmetic, pictured,
string, or pointer variables whose storage class is STATIC or that are
members of a STATIC structure. The initial values are converted and
assigned to the variables by the compiler and/or loader and must be
constants that can be converted to the data type of the variables.
NULL may be specified only for pointer variables and must not have been
declared the name of anything other than the NULL built-in function.

INPUT

INPUT is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
INPUT attribute. An attempt to open a file declared as INPUT with
attributes that conflict with the INPUT attribute will result in a
signal of the ERROR condition. INPUT cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

INTERNAL

INTERNAL specifies that the declared name has internal scope. It may
be given with any storage class attribute or to parameters, but it has
no significance since these variables always have internal scope. If
STATIC is used without INTERNAL or EXTERNAL, INTERNAL is supplied by
de fau l t .

KEYED

KEYED is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
KEYED attribute. An attempt to open a file declared as KEYED with
attributes that conflict with the KEYED attribute will result in a
signal of the ERROR condition. KEYED cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

LABEL

LABEL is a data type attribute that specifies label values. When used
in a declaration of a name, it specifies that the declared name is a
label variable. When used in an ENTRY attribute, it specifies that the
corresponding parameter is a label variable, and when used in a RETURNS
attribute, it specifies that the procedure returns label values.

See Section 3 for a discussion of label values.

OUTPUT

OUTPUT is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the

- 1 3 A p r i l 1 9 8 0

S E C T I O N 5 I D R 4 0 3 1

OUTPUT attribute. An attempt to open a file declared as OUTPUT with
attributes that conflict with the OUTPUT attribute will result in a
signal of the ERROR condition. OUTPUT cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

PICTURE 'p'

PICTURE is a data type attribute that specifies pictured values. The
picture p contains an image of the data and specifies the editing which
is to be performed each time that a value is assigned to a pictured
variable. It also governs the conversion of pictured values to
fixed-point decimal values. See Section 3 for a discussion of pictured
data and the picture characters.

POINTER

POINTER is a data type attribute that specifies pointer values. A
pointer value is the address of a variable and is discussed in Section
3.

PRINT

PRINT is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will Implicitly receive the
PRINT attribute. An attempt to open a file declared as PRINT with
attributes that conflict with the PRINT attribute will result in a
signal of the ERROR condition. PRINT cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

RECORD

RECORD is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
RECORD attribute. An attempt to open a file declared as RECORD with
attributes that conflict with the RECORD attribute will result in a
signal of the ERROR condition. RECORD cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

R E V . 0 5 - 1 4

IDR4031 DECLARATIONS AND ATTRIBUTES

RETURNS(t)

RETURNS is part of an entry data type specification. It specifies that
the entry value designates a procedure which returns a value of data
type t, where t is a list of attributes that specify a data type.
Examples:

DECLARE F ENTRY(FIXED) RETURNS(POINTER);

DECLARE G ENTRY(FLOAT) RETURNS(CHARACTER(32) VARYING);

F is declared as the name of a procedure that returns pointer values.
G is declared as the name of a procedure that returns varying
character-string values whose maximum length is 32 characters.

Any string length given in a RETURNS attribute must be an integer
constant. The only attributes that can be given in a RETURNS attribute
are data type attributes. DIMENSION or level numbers cannot be given
because functions cannot return arrays or structures.

SEQUENTIAL

SEQUENTIAL is an optional part of the declaration of a file constant.
It specifies that when the file is opened it will implicitly receive
the SEQUENTIAL attribute. An attempt to open a file declared as
SEQUENTIAL with attributes that conflict with the SEQUENTIAL attribute
will result in a signal of the ERROR condition. SEQUENTIAL cannot be
specified for file variables. See Section 2 for a discussion of PL1G
I/O.

STATIC

STATIC is a storage class attribute that specifies that the declared
name is a static variable. See Section 4 for a discussion of static
storage.

STREAM

STREAM is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
STREAM attribute. An attempt to open a file declared as STREAM with
attributes that conflict with the STREAM attribute will result in a
signal of the ERROR condition. STREAM cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

UPDATE

UPDATE is an optional part of the declaration of a file constant. It
specifies that when the file is opened it will implicitly receive the
UPDATE attribute. An attempt to open a file declared as UPDATE with

- 1 5 A p r i l 1 9 8 0

S E C T I O N 5 I D R 4 0 3 1

attributes that conflict with the UPDATE attribute will result in a
signal of the ERROR condition. UPDATE cannot be specified for file
variables. See Section 2 for a discussion of PL1G I/O.

VARIABLE

VARIABLE is part of a file or entry data type specification. It
specifies that the declared name is a file or entry variable rather
than a file name or procedure name. See Section 3 which discusses file
and entry data.

VARYING

VARYING is part of a character-string data type specification. It
specifies that the string values may have any length which does not
exceed the declared length. See Section 3 which discusses
character-string data.

R E V . 0 5 - 1 6

I D R 4 0 3 1 R E F E R E N C E S

SECTION 6

REFERENCES

DEFINITIONS

A reference is a name, together with any subscripts, pointer qualifier,
or structure names necessary to indicate the purpose of the reference.
References to procedures or built-in functions may also contain an
argument list. Examples:

X

Y(5,K)

P->S.A(K)

F(Z*5+B,SQRT(Z))

Q.NEXT->N0DE.FIELD1

A reference is associated with a declaration according to the scope of
the declared name. The process of associating a reference with a
declaration is called resolution of the reference and it occurs during
compilation of the program. This section gives the exact rules for
resolving references.

SIMPLE AND SUBSCRIPTED REFERENCES

A simple reference is a name without any subscripts, pointer qualifier,
e tc .

A subscripted reference is a name that has been declared as an array,
followed by a parenthesized list of subscript expressions. Each
subscript expression must produce an integer fixed-point value that
lies within the lower and upper bounds specified for that dimension in
the array declaration. The number of subscript expressions must be
equal to the number of dimensions. Examples:

DECLARE A(5,5) FLOAT;
DECLARE B(10) FLOAT;

A(K*2,3) = B(l);

Both A(K*2,3) and B(l) are subscripted references, K is a simple
reference.

April 1980

S E C T I O N 6 I D R 4 0 3 1

STRUCTURE QUALIFIED REFERENCES

A structure qualified reference is a sequence of names written
left-to-right in order of increasing level-numbers. The names are
separated by periods, and blanks may be written around the periods.
The sequence need not include all containing structure names, but it
must include sufficient names to make the reference unique.

A structure qualified reference that includes the name of each
containing structure from the major structure down to the member is a
fully qualified reference. If the name of one or more of the
containing structures is omitted, the reference is a part ial ly
qualified reference.

Because the names of structure members can be redeclared or reused
within the same block, their scopes overlap. If a member's name has
been redeclared within the same block, any reference to that member
must be qualified by the name of its containing structure. If the
containing structure's name has been redeclared within the same block,
it must be qualified by the name of its containing structure until an
unambiguous reference is created. Example:

DECLARE 1 S,
2 A FIXED,
2 B,

3 A FLOAT,
3 C FLOAT;

A reference to A is ambiguous because the scope of A FLOAT overlaps the
scope of A FIXED. A structure qualified reference S.A refers to A
FIXED. A structure qualified reference to B.A refers to A FLOAT.
Also, a structure qualified reference S.B.A. refers to A FLOAT.

In the previous example, B.A is a partially qualified reference and
S.B.A is a fully qualified reference, as are S.A, S.B, and S.B.C.

Subscripts can be used anywhere within a structure qualified reference,
but it is a good practice to write each set of subscripts immediately
following the name that has the corresponding bounds declared for it.
Example:

DECLARE 1 S(10) ,
2 A FIXED,
2 B(3) FLOAT,
2 C(3),

3 D POINTER;

A reference to S(K).A and a reference to S.A(K) are equivalent, but
S(K).A is preferred. Other recommended references are S(K).B(J) and
S(K) .C(J) .D.

REV. 0

I D R 4 0 3 1 R E F E R E N C E S

POINTER QUALIFIED REFERENCES

A reference to a based variable may be qualified by a reference to a
pointer variable. Example:

DECLARE A(10) FLOAT BASED;
DECLARE P POINTER;

P->A AND P->A(K) are pointer qualified references to the based variable
A. S ince a po in ter var iab le may i tse l f be based, mul t ip le
qualification is possible. Example:

DECLARE 1 NODE BASED,
2 NEXT POINTER,
2 VALUE FLOAT;

DECLARE HEAD POINTER;

HEAD->NODE.NEXT->NODE.VALUE is a pointer qualified reference to
NODE.VALUE. It is qualified by NODE.NEXT that is, in turn, qualified
by HEAD.

Pointer-valued functions and pointer-valued built-in functions may also
be used as pointer qualifiers. Example:

DECLARE NEXT_NODE ENTRY RETURNS(POINTER);

NEXT_NODE()->NODE.VALUE is a pointer qualified reference to NODE.VALUE
whose qualifier is a function reference. Refer to the description of
procedure and built-in function references in the following paragraphs.

PROCEDURE REFERENCES

A procedure reference is any reference followed by an argument list
consisting of a parenthesized list of expressions separated by commas
or followed by an empty argument list (). A procedure reference that
returns a value is called a function reference, and one that does not
return a value is called a subroutine reference.

If an argument list or empty argument list is given, the referenced
name must be declared as an entry either by appearing as a label prefix
on a PROCEDURE statement or by a DECLARE statement. Unless the
reference is part of a CALL statement, the referenced entry must return
a value. If the reference is part of a CALL statement, the entry must
not return a value. Therefore, a procedure that returns a value must
always be called as a function and a procedure that does not return a
value must always be called as a subroutine.

A name declared as an entry is called only when it is referenced with
an argument list, or when it is called by a CALL statement. A function
that has no parameters must be referenced with an empty argument list.

April 1980

S E C T I O N 6 I D R 4 0 3 1

Except when it is part of a CALL statement, a reference to an entry
written without an argument list is a reference to the entry value,
rather than a function reference that calls the entry. Example:

DECLARE F ENTRY RETURNS (POINTER) ;
DECLARE G ENTRY(FIXED) RETURNS(FLOAT) ;
DECLARE V ENTRY VARIABLE RETURNS (POINTER) ;

V = F;

A reference to F() calls F and produces a pointer value. A reference
to F is a reference to the entry value of F and can be used as in the
example where it is assigned to the entry variable V. A reference to G
is also a reference to an entry value and does not call G. G is called
by references containing an argument list.

An array of entry variables may be referenced with subscripts and with
an argument list. In this case, the argument list follows the
subscript list. Example:

DECLARE E(5) ENTRY(FIXED) VARIABLE RETURNS(POINTER);

E is a reference to the entire array of entry values. E(K)(J) is a
pointer valued function reference that calls E(K), passing it the
argument J. E(K) is an entry value that may be passed to an entry
parameter or assigned to an entry variable. If E had been declared
without parameters, an empty argument list would have been used in
place of (J) in these examples.

BUILT-IN FUNCTION REFERENCES

A reference to a built-in function always produces the value of that
function and is never an entry value. Built-in functions cannot be
assigned to entry variables or passed as arguments to entry parameters.

Built-in functions that take arguments do not have to be declared, but
built-in functions that take no arguments such as NULL, ONCODE, etc.,
must either be referenced with an empty argument list () or must be
declared with the BUILTIN attribute.

VARIABLE REFERENCES

A reference to a variable may occur in a context that expects a value
or it may occur in a context that assigns a value to the variable. If
a value is expected, the variable must have previously been assigned a
value or must be a static variable declared with the INITIAL attribute.
A reference to the value of a variable that has no value produces
unpredictable results.

REV. 0

I D R 4 0 3 1 R E F E R E N C E S

A variable appearing in the left side of an assignment operator or in
the list of a GET statement causes assignment to that variable. The
ADDR, HBOUND, LBOUND, DIMENSION, and LENGTH built-in functions
reference a variable but do not expect a value. (However, LENGTH of a
varying string variable does require that the string variable have a
value.) A variable passed by-reference to a parameter does not need to
have a value if the parameter is not expected to have a value upon
entry to its procedure. The record I/O statements copy a variable's
storage and do not require the variable to have a value.

REFERENCE RESOLUTION

A fully or partially qualified structure reference is applicable to
declarations of structures that include the same hierarchy of names as
is used in the structure reference.

A simple or subscripted reference to a name is applicable to any
declaration of the name.

A reference is resolved by finding the innermost block that contains
any applicable declaration. If no containing block has an applicable
declaration, the reference is invalid.

If the block has only one applicable declaration, the reference is
resolved to that declaration. If the block has more than one
applicable declaration, the reference must be a fully qualified
reference to only one declaration in that block; otherwise, the
reference is ambiguous and invalid.

Once a block containing an applicable declaration is found, no
containing blocks are searched in an attempt to resolve a reference.

The presence of subscripts, arguments, or a pointer qualifier has no
effect on the resolution of a reference and cannot make an ambiguous
reference unique.

A simple or subscripted reference to a name X is considered to be a
fully qualified reference to a nonmember declaration of X. This means
that if a member and a nonmember are declared to have the name X in the
same block, a reference to X is resolved to the nonmember. The member
must be referenced using a structure qualified reference.

April 1980

IDR4031 EXPRESSIONS

SECTION 7

EXPRESSIONS

DEFINITION OF EXPRESSION

An expression consists of operators and operands. An operand may be a
constant, a variable reference, a function reference, a built-in
function reference, or another expression.

Expression Operators

The operators are:

Operator Defini t ion

+ _ * / * *

+ -

= ~= > < >= <= ~< ~>

! (or !) &

I I (or !!)

ar i thmet ic infix

arithmetic prefix

r e l a t i o n a l

b i t - s t r i n g i n fi x

b i t -s t r ing prefix

concatenate

An infix
operator

A+B
A*B
A*-B
A>B
A|B
~A
Al IB

operator is written between its two operands. A prefix
is written in front of its operand. Examples:

Evaluation of Expressions

The order in which an expression is evaluated is determined by
parentheses and by the priority of its operators. The priority of the
operators is listed below in descending order, from highest to lowest
p r i o r i t y :

April 1980

S E C T I O N 7 I D R 4 0 3 1

** " prefix + and -
* /
+ -

= ~= > < >= <= ~< >
&

Within a parenthesized expression, operators are evaluated in the order
of decreasing priority. Example:

A**2+B<C
is evaluated as:
((A**2)+B)<C

Parentheses are used to alter the order of evaluation. Example:

A+B*C
is evaluated as:
A+(B*C)

because * has higher priority than +. However, parentheses can be used
to force another order. Example:

(A+B) *C

Operations having the same priority are evaluated from left to right,
except for the prefix operators and ** which are evaluated from right
to left. Example:

A+B+C**-D
is evaluated as:
(A+B)+(C**(-D))

If the result of an operator can be determined without evaluating all
of its operands, the operands are not necessarily evaluated. A program
that depends on all operands being evaluated is invalid and may produce
unexpected results when compiled with optimization enabled or when
moved to another implementation of PL/I. Likewise, a program that
depends on some operands not being evaluated is invalid. Example:

IF A = 0 I B/A = 5 THEN ...

REV. 0

I D R 4 0 3 1 E X P R E S S I O N S

ARITHMETIC EXPRESSIONS

Operators

The arithmetic operators are:

O p e r a t o r D e fi n i t i o n

p r e fi x + p l u s

p r e fi x - m i n u s
+ a d d

- s u b t r a c t

* m u l t i p l y

/ d i v i d e
* * e x p o n e n t i a t e

Operand Data Types

The arithmetic operators require arithmetic operands. Pictured values
are converted to FIXED DECIMAL values, but other nonarithmetic values
must be converted to arithmetic values by one of the conversion
built-in functions such as BINARY, DECIMAL, FIXED, or FLOAT.

If the data types of two operands of an infix operator, other than **,
differ, the operands are converted to a common arithmetic data type.

If one operand is FIXED and the other is FLOAT, the common type is
FLOAT. If one operand is BINARY and the other is DECIMAL, the common
base is BINARY if the result is either floating-point or an integer,
and the common base is DECIMAL if the result is a fixed-point
noninteger. (This latter case is nonstandard and produces an error
message from the compiler.)

The precisions of two operands may differ without causing conversion of
the operands.

Each arithmetic operator produces a value whose resulting data type is
determined by the converted data types of its operands.

Precision Rules

Fixed Point: The fixed-point precision rules effectively allow the
result to be formed by aligning the decimal points of the two operands
and producing a fixed-point result. The number of digits in the result
is always limited by the maximum number of digits allowed by the
implementation for the result base, but all fractional digits of the

April 1980

S E C T I O N 7 I D R 4 0 3 1

result are preserved, except for the result of divide. For divide, all
integer quotient digits are preserved and as many fractional digits as
can be allowed by the implementation are preserved.

Floating Point: Except for exponentiat ion, floating-point results
always have a precision that is the maximum of the precisions of the
converted operands.

The following rules give the result's precision for fixed-point values
and for the exponential operator.

Prefix: Plus and minus produce a result whose data type is the same as
the converted operand.

Addition and Subtraction: Add and subtract of fixed-point values
produces a fixed-point result whose base is the common base and whose
precision is:

(MIN(N,MAX(PH2,R-S)+MAX(Q,S)+1) ,MAX(Q,S))

where N is the implementation's maximum allowed precision for
fixed-point values of the result base, (P,Q) is the converted precision
of the first operand, and (R,S) is the converted precision of the
second operand.

For integer operands, the result precision formula reduces to:

(MIN(N,MAX(P,R)+1))

Mul t ip l icat ion: Mul t ip l icat ion of fixed-poin t va lues produces a
fixed-point result whose base is the common base and whose precision
i s :

(MIN(N,P+R+1),Q+S)

where N is the implementation's maximum allowed precision for
fixed-point values of the result base, (P,Q) is the converted precision
of the first operand, and (R,S) is the converted precision of the
second operand.

For integer operands, the result precision formula reduces to:

(MIN(N,P+R+1))

Note

The +1 of the multiplication formula gives more result
precision than is needed. This rule derives from the full
language where the formula is intended to accommodate complex
as well as real fixed-point values.

REV. 0

I D R 4 0 3 1 E X P R E S S I O N S

Division: Divide of fixed-point values is only possible if both
operands are fixed decimal. The result is a fixed decimal value of
prec is ion:

(N,N-P+Q-S)

where N is the maximum fixed-point decimal precision, (P,Q) is the
precision of the first operand, and (R,S) is the precision of the
second operand.

For integer operands, this formula reduces to:

(N,N-P)

The formula produces a result quotient that has sufficient precision
for all integral digits of the quotient and as many fractional digits
as are allowed by the implementation.

The result of division has a large fraction and generally cannot be
added or multiplied with another value because alignment of the decimal
point with the other value produces a result that is too big for the
implementation to support.

The DIVIDE built-in function can be used to divide fixed-point binary
values as well as fixed-point decimal values. It provides the
programmer with control over the result precision. See Section 10.

Exponentiation: Exponentiation produces a result whose base, scale,
and precision depend on the operands and which is determined by one of
three cases:

1. If the first operand is fixed-point and the second operand is
an integer constant whose value is Y, and if (P+1)*Y-1 does not
exceed N, the result is a fixed-point value whose base is that
of the first operand and whose precision is:

((P+1)*Y-1,Q*Y)

where N is the maximum precision allowed for fixed-point values
of the base of the first operand, (P,Q) is the precision of the
first operand, and Y is the value of the second operand.

2. If the second operand is a fixed-point integer value, but Case
1 does not apply, the result is a floating-point value whose
base is that of the first operand and whose precision is:

MIN(N,P)

where N is the maximum precision allowed by the implementation
for floating-point values of the resulting base, and P is the
precision of the first operand.

April 1980

S E C T I O N 7 I D R 4 0 3 1

3. If neither Case 1 nor Case 2 applies, the result is a
floating-point value having the common base and whose precision
i s :

MIN(N,MAX(P,R))

where N is the maximum allowed precision for floating-point
values having the result base and P is the converted precision
of the first operand and R is the converted precision of the
second operand.

The result of exponentiation is normally the first operand raised to
the power of the second operand. The following are exceptions to this
general rule:

if X = 0 and Y>0, the result is 0
if X = 0 and Y<= 0, ERROR is signalled
if X"- 0 and Y = 0, the result is 1
if X<0 and Case 1 does not apply, ERROR is signalled.

X is the value of operand one and Y is the value of operand two.

RELATIONAL EXPRESSIONS

Operators and Results

The relational operators are:

O p e r a t o r D e fi n i t i o n

= e q u a l

~ = n o t e q u a l

> g r e a t e r t h a n

< l e s s t h a n

> = g r e a t e r t h a n o r e q u a l

< = l e s s t h a n o r e q u a l

~ < n o t l e s s t h a n (e q u i v a l e n t t o > =)

~ < n o t g r e a t e r t h a n (e q u i v a l e n t t o < =)

The result of a relational operator is always a bit-string of length
one that is 'l'B if the relationship is true and is otherwise '0'B.

REV. 0

I D R 4 0 3 1 E X P R E S S I O N S

Operand Data Types

If either operand is an arithmetic value or a pictured value, the
operands are converted to a common arithmetic type as if they were
operands of an add operator. In all other cases, the data types of the
two operands must be equivalent.

The ALIGNED, VARYING, RETURNS, VARIABLE and string length attributes
are ignored when determining if two data types are equivalent for
purposes of these operators. Label, entry, file, and pointer data may
only be compared for equality or inequality. Arithmetic and string
data may be compared using any relational operator.

Arithmetic and pictured values are compared algebraically.

Character string values are compared from left to-right one character
at a time until an inequality is found. The shorter value is extended
on the right with blank characters to make it the length of the longer
value. Characters are compared using the collating sequence of the
computer.

Bit-string values are compared from left to right one bit at a time
until an inequality is found. The snorter value is extended with zero
bits on its right until it is the length of the longer value.

Pointer values are equal only if they address the same storage
loca t ion .

Label and entry values are equal only if they designate the same
statement and the same stack frame.

File values are equal only if they designate the same file control
block.

BIT-STRING EXPRESSIONS

Operators

The bit-string operators are:

O p e r a t o r D e fi n i t i o n

& A N D

I (o r !) i n c l u s i v e O R

NOT (complement)

April 1980

S E C T I O N 7 I D R 4 0 3 1

Operands

Bit-string operators require bit-string operands. Operands of other
data types must be converted to bit-string values using the BIT
built-in function.

The infix operators & and I operate on operands of dissimilar length by
extending the shorter value to be the length of the longer value by
appending zero bits to the right end of the shorter value.

Results

The result of is a bit-string whose bits are the complement of the
bits in the operand. (Each 0 bit becomes a 1 and each 1 bit becomes a
0 bit.)

The result of & and | is a bit-string whose length is that of the
larger operand. Each bit of the result is given below:

O p e r a n d 1 O p e r a n d 2 & ^ J _

0 0 0 0

1 0 0 1

1 1 1 1

For example, if X is '01011'B and Y is ' 11001'B, "X produces '10100'B,
X&Y produces '01001'B, and X|Y produces '11011'B. X&'ll'B would
produce '01000'B.

CONCATENATE EXPRESSIONS

Operator

The concatenate operator || (or I!) is used to concatenate two strings
producing a string result.

Operands

If both operands are bit-strings, it produces a bit-string result;
otherwise, both operands are converted to character-strings, and a
character-string result is produced.

Results

The length of the string result is the sum of the lengths of the
converted operands. Example:

REV. 0

I D R 4 0 3 1 E X P R E S S I O N S

A = 'ABC';
B = 'XYZ';

Al |B produces 'ABCXYZ', and A||5 produces 'ABC###5' (where # represents
a blank character) . The blanks in this last example result from the
conversion of the fixed-point constant 5 to a character-string. The
conversion rule that produces the blanks is explained in Section 8.

April 1980

I D R 4 0 3 1 C O N V E R S I O N S

SECTION 8

DATA TYPE CONVERSIONS

INTRODUCTION

Each arithmetic, pictured, or string value can be converted to another
value whose data type is any other arithmetic, pictured, or string data
type. No conversion is possible for data other than arithmetic,
pictured, or string data.

Conversions occur as a result of using the assignment, arithmetic,
relational, or concatenate operators, from the use of certain built-in
functions, from GET/PUT statements, and from some statement options
such as KEY and KEYFROM.

Each conversion begins with a source value to be converted and a
complete or partial data type called the target data type. The target
data type is determined by the context that caused the conversion. For
example, the data type of the variable on the left side of the
assignment operator provides the target data type for the conversion
that is to be performed for that assignment. A partial target data
type may result from the use of a conversion built-in function such as
FIXED, FLOAT, BINARY, DECIMAL, BIT, or CHARACTER, as well as by other
contexts, such as arithmetic operators.

The conversion rules described in Section 7 define the target data type
for conversions that result from arithmetic or relational operators.
Section 7 also gives the target data type for conversions that result
from use of the concatenate operator.

The following kinds of conversion are defined:

Arithmetic to Arithmetic
Arithmetic to Bit-string
Arithmetic to Character-string
Bit-string to Arithmetic
Bit-string to Character-string
Character-string to Arithmetic
Character-string to Bit-string
Format Controlled
Pictured to Arithmetic
Pictured to Bit-string
Pictured to Character-string
Conversion to Pictured

The CEIL function used in many of the conversion rules gives the
smallest integer that is greater than or equal to the function's
argument. For example, CEIL(1.1) produces the value two.

April 1980

S E C T I O N 8 I D R 4 0 3 1

ARITHMETIC TO ARITHMETIC CONVERSION

This conversion occurs most frequently as a result of using operands of
differing arithmetic types in an arithmetic or relational operator. In
this case, as well as others, the target base and scale are supplied by
the conversion rules of the operator or built-in function, but the
target precision is not supplied.

If a target precision is not supplied, it is determined from the data
type of the source value and the target base and scale as shown in
Table 8-1.

REV. 0

IDR4031 CONVERSIONS

Table 8-1. Target Precisions

Target
base
and

scale,
prec

r [, s]
v-

FIXED
BINARY

+ 1 - h + ^

FIXED
DECIMAL

I-
FLOAT
BINARY

FLOAT
DECIMAL

Source base and scale, precision p[,q]

FIXED BINARY I FIXED DECIMAL I FLOAT BINARY I FLOAT DECIMAL

r = p
r = MIN(CEIL

(p*3.32)+l ,
N)

r = MIN(CEIL
(p /3 .32)+ l ,

N)

s = 0

r = MIN(p,N)

r = p

s = q

r = MIN(CEIL
I (p*3.32),N)

r = MIN(CEIL | r = MIN(p,N)
(p/3.32),N) |

r = p I r = MIN(CEIL
I (p*3.32),N)

r = MIN(CEIL I r = p
(p/3.32),N) I

l~-

"*" — These conversions arise only in cases where the target pre
cision is explicitly known

"N" is the maximum number of digits allowed by the implementation
for the target base and scale.

April 1980

S E C T I O N 8 I D R 4 0 3 1

Conversion of a fixed-point decimal value containing a fraction to
floating-point or vice versa produces an approximate value.

Conversion of a fixed-point decimal value containing a fraction to a
fixed-point value with no fraction or fewer fractional digits results
in truncation of excess digits without rounding. Rounding can be
performed by using the ROUND, CEIL, FLOOR, or TRUNC built-in functions.

If the target precision does not provide sufficient digits to hold all
integral digits of the converted value, the program is in error. This
error may or may not be detected by an implementation. If detected,
the implementation signals the ERROR condition. If not detected, the
program produces unpredictable results. Programs that contain this
undetected error and produce "correct" results, may fail when moved to
another implementation of PL/I.

The following examples show the target precisions given by Table 8-1
for some common source values and target data types:

S o u r c e T a r g e t

FIXED BINARY(15) F IXED DECIMAL(6,0)
FIXED BINARY(31) FIXED DECIMAL(11,0)
FLOAT BINARY(23) FLOAT DECIMAL(7)
FLOAT BINARY(47) FLOAT DECIMAL(14)
FIXED DECIMAL(4) F IXED BINARY(15)
FIXED DECIMAL(7) F IXED BINARY(25)
FLOAT DECIMAL(6) FLOAT BINARY(20)
FLOAT DECIMAL(14) FLOAT BINARY(47)

ARITHMETIC TO BIT-STRING CONVERSION

This conversion converts the absolute value of an arithmetic value to a
bit-string and may not produce the result expected by the programmer.

The arithmetic source value is first converted to FIXED BINARY(K) where
K is determined by the source data type as shown in the following
examples:

S o u r c e D a t a T y p e Va l u e o f K

FIXED DECIMAL(P,Q) MIN(N,CEIL((P-Q)*3.32))
FLOAT DECIMAL(P) MIN(N,CEIL(P*3.32))
F I X E D B I N A R Y (P) P
FLOAT B INARY(P) MIN(N ,P)

REV. 0

I D R 4 0 3 1 C O N V E R S I O N S

The absolute value of the resulting integer is considered to be a
bit-string of length K. If the context that caused the conversion
supplied a target length, this bit string is extended on the right with
zero bits to make it the length of a longer target or excess rightmost
bits are truncated to make it the length of a shorter target. The
program is in error and may produce unpredictable results if the value
of the source is too large to be converted to an integer of precision
(K).

For example, a small integer such as 5 whose data type is FIXED
BINARY(15) is converted to a bit-string of length 15 whose value is
'000000000000101'B. I f the target is BIT(16) , the resul t is
'0000000000001010'B because padding occurs on the right end. If the
target is BIT(5), the result is '00000'B because excess rightmost bits
are truncated.

ARITHMETIC TO CHARACTER-STRING CONVERSION

This conversion normally occurs during list-directed stream output,
concatenation, or assignment to a character-string.

The arithmetic source value is first converted to a decimal value
having the same scale as the source and with a decimal precision
determined by the target precision table given in Table 8-1.

The decimal value whose precision is now (p[,q]) is then converted to a
character string whose value is given by one of the following cases.

Case 1: If the decimal value is floating-point, the length of the
resulting character-string is p+n+4 and its value consists of: n
exponent digits preceded by the sign of the exponent, preceded by the
letter E, preceded by jo-1 digits of the mantissa, preceded by a decimal
point, preceded by the most significant digit of the mantissa, preceded
by a minus if the value is negative or by a blank if it is not
negative. The number of exponent digits depends on the implementation
but is constant for a given implementation. Examples:

#0.000000E+00
-7.531000E+02
#5.499990E-06

These values could result from conversion of a FLOAT BINARY(23) value.
Seven digits are produced because FLOAT BINARY(23) converts to FLOAT
DECIMAL(7) using the target precisions in Table 8-1.

Case 2: If the decimal value is fixed-point with no fraction (q=0),
the length of the resulting character-string is p+3 and its value
consists of: the p digits of the decimal value with no leading zeroes
(the value zero has one zero digit), preceded by a minus if the value
is negative, preceded by sufficient blanks to fill the p+3 character
result. Examples:

April 1980

S E C T I O N 8 I D R 4 0 3 1

########0
#######52
#####-500

These values could result from conversion of a FIXED BINARY(15) value.
The result is nine characters long because FIXED BINARY(15) converts to
FIXED DECIMAL(6) and the result is 6+3 characters long.

Case 3: If the decimal value is fixed-point with a fraction (cf=0) ,
the length of the resulting character string is p+3 and its value
consists of q fractional digits, preceded by a decimal point, preceded
by p-q integral digits with no leading zeros, (fractions and the value
zero have one integral zero digit), preceded by a minus if the value is
negative, preceded by sufficient blanks to fill the p+3 character
result. Examples:

####0.00
##-50.00
###27.42
####0.05
###-0.01

These values could result from converting a FIXED DECIMAL(5,2) value.

The extra three characters produced for fixed-point values are intended
to allow for the case when £ = p. In that case, room is needed for a
sign, a zero, a decimal point, and p digits.

Programmers who would like to convert arithmetic values to strings that
have no leading blanks may use the TRIM function described in Section
10.

BIT-STRING TO ARITHMETIC CONVERSION

Unlike its inverse, bit-string to arithmetic conversion produces
reasonable results and permits small bit-strings to be used to hold
small positive integers. However, because arithmetic operators require
arithmetic operands, the BINARY or DECIMAL built-in function should be
used to explicitly convert a bit-string value to a binary or decimal
integer value.

The conversion is invalid if the length of the source bit-string
exceeds N, where N is the maximum precision allowed by the
implementation for fixed-point binary values.

If no target base or scale is given by the context that caused the
conversion, FIXED BINARY is supplied by default. If a target precision
is not given, the maximum precision allowed for the target base and
scale is supplied.

REV. 0

I D R 4 0 3 1 C O N V E R S I O N S

The rightmost bit of the source value is considered to be the units
position of a positive binary integer value of precision n, where n is
the length of the source bit-string value. The value of that binary
integer is then converted to conform to the base, scale, and precision
of the target using the normal rules for arithmetic to arithmetic
conversion given in Table 8-1. A null bit-string value converts to
zero. Examples:

S o u r c e R e s u l t

' 1 0 1 ' B 5
" B 0
' 0 0 0 0 ' B 0

BIT-STRING TO CHARACTER-STRING CONVERSION

A bit-string value is converted to a character-string value of the same
length as the bit-string. Each bit of the bit-string is converted to a
0 or 1 character in the resulting character-string. A null bit-string
is converted to a null character-string.

If the context that caused the conversion gives a target length, the
character-string is truncated to conform to a shorter target or is
padded on the right with blanks to conform to a longer target.
Examples:

S o u r c e R e s u l t

' 0 ' B ' 0 '
i . B i i

' 1 0 1 1 ' B ' 1 0 1 1 '

CHARACTER-STRING TO ARITHMETIC CONVERSION

If the context that caused the conversion does not give a target base
or scale, FIXED or DECIMAL is supplied by default. If it does not
supply a target precision, the maximum precision allowed by the
implementation for the target base and scale is supplied.

If the source character-string value is a null string or if it contains
all blanks, the result value is zero; otherwise the source string must
contain a valid optionally signed constant surrounded by optional
blanks. The constant is converted to conform to the data type of the
target using the normal rules for arithmetic to arithmetic conversion
given in Table 8-1. Examples:

April 1980

S E C T I O N 8 I D R 4 0 3 1

S o u r c e R e s u l t

5 E + 0 # 5
- 7 # # # - 7
- 4 # # # # - 4
. 0 5 # 0
0

These results would be produced by converting a CHARACTER(6) source
value to a fixed-point integer result value.

CHARACTER-STRING TO BIT-STRING CONVERSION

A character-string source value that contains any characters other than
0 and 1 cannot be converted to a bit-string value. An attempt to do so
results in a signal of the ERROR condition.

A character-string value is converted to a bit-string value of the same
length as the character-string. Each character is converted to a 0 or
a 1 bit in the resulting bit-string. A null character-string is
converted to a null bit-string.

If the context that caused the conversion gives a target length, the
bit-string is padded on the right with the required number of zero bits
to conform to the longer target, or the rightmost excess bits are
truncated to conform to a shorter target. Examples:

S o u r c e R e s u l t

i i " B

• 0 1 0 ' ' 0 1 0 ' B
i i nva l i d

FORMAT CONTROLLED CONVERSION

These conversions occur only when a format-list is used by a GET or a
PUT statement.

An input conversion occurs when a field of an input line is converted
to a result value specified by a data format. That result value is
then assigned to a variable given by the list of the GET statement. If
the data type of the variable differs from the data type of the result
value produced by the format, an additional conversion results from the
assignment.

An output conversion occurs when a value given in the list of a PUT
statement is converted to a result field by a format.

REV. 0

I D R 4 0 3 1 C O N V E R S I O N S

F-Format

The general form of an F-Format list is:

F(w) or F(w,d)

where w is an integer constant that specifies the width of the field
and d is an integer constant that specifies the number of fractional
digits in the field.

F-Format Input Conversion: for input conversion, a field of w
characters from the input line is converted to a fixed-point decimal
value of precision (p,q). If the field contains a decimal point, q is
the number of digits following the decimal point; otherwise, q is the
value of d or is zero if d is omitted. If the field contains all
blanks, the result value is zero and p is the value of MIN(N,w) where N
is the maximum precision allowed by the implementation for fTxed-point
decimal data. If the field does not contain blanks, it must contain an
optionally signed fixed-point constant with optional leading or
trailing blanks. In that case, p is the precision of the constant.
Examples:

Field Result Precis ion

(5,1)
-700# -70.0 (3,1)
##fr#0 (1,0)
25.## 25 (2,0)
#5E+1 inva l i d

These results would be produced by an F(5,l) format.

F-Format Output Conversion: for output conversion, an arithmetic or
string value from the list of a PUT statement is converted to a
fixed-point decimal value that is then rounded and formatted as a
character-string of w characters containing a value with d fractional
d i g i t s .

If d = 0 or is omitted, the source value is converted to a fixed-point
decimal value with no fractional digits, and the resulting integer
value is placed right justified into the field of w blank characters
with leading zeros suppressed. (The value zero has one zero digit.)
For negative values, the first significant digit is preceded by a
minus. If the value and its sign cannot fit in w characters, the ERROR
condition is signalled. Examples:

April 1980

S E C T I O N 8 I D R 4 0 3 1

V a l u e R e s u l t

0 # ! r # 0
2 5 # # 2 5
- 8 # # - 8
1 3 . 5 # # 1 4
1 7 . 0 8 # # 1 7
1 0 0 0 1 0 0 0
- 1 0 0 0 i n v a l i d

These results would be produced by an F(4) format.

If d ~= 0, the source value is converted to a fixed-point decimal value
with d+1 fractional digits. The last fractional digit is rounded by
the addition of 5, and it is deleted. The resulting value is placed
right-justified into a field of w characters with leading integral zero
digits suppressed by blanks (fractional values and zero have one
integral zero digit). The leading digit is preceded by a minus if the
value is negative. If the value, its decimal point, and its sign
cannot fit in w characters, the ERROR condition is signalled.
Examples:

S o u r c e F i e l d

0 #0.00
-1 -1.00
.005 #0.01
.0005 #0.00
10 10.00
-10 inva l i d

These result would be produced by an F(5,2) format.

E-Format

The general form of an E-Format list is:

E(w) or E(w,d)

where w is an integer constant that specifies the width of the field
and d is an integer constant that specifies the number of fractional
digits in the field.

E-Format Input Conversion: for input conversion, a field of w
characters from the input line is converted to a floating-point decimal
value of precision p. If the field contains a decimal point and/or an
exponent, the value of d is ignored; otherwise, d indicates that the
last d digits in the field are fractional digits. If a field contains
all blanks, p is MIN(N,w) where N is the maximum precision allowed by
the implementation for floating-point decimal values; otherwise, p is
the precision of the constant contained within the field. The field
must either be all blank or must contain an optionally signed

R E V . 0 8 - 1 0

IDR4031 CONVERSIONS

fixed-point or floating-point constant preceded or followed by optional
blanks. Examples:

F i e l d R e s u l t

0E0
#-l### -0.1E0
-25E10 -25E10
#7.41# 7.41E0
##150# 15E0

These results would be produced by an E(6,l) format.

E-Format Output Conversion: for output conversion, an arithmetic or
string value from a PUT statement's list is converted to a
floating-point decimal value and placed right justified into a field of
w blanks.

The result field contains n exponent digits, where n is an
implementation-defined constant, preceded by the sign of the exponent,
preceded by the letter E, preceded by d digits of the mantissa (if d is
omitted, it is taken to be p-1) , preceded by a decimal point, preceded
by the most significant digit of the mantissa, preceded by a minus if
the value is negative.

If the value and its sign cannot fit in w characters, the ERROR
condition is signalled. Examples:

Value Format Field

0 E(10,3) #0.000E+00
-15 E(10,3) -1.500E+01
12345678 E(10,3) #1.234E+07
7.3E-10 E(10,3) #7.300E-10
0 E(14) ##0.000000E+00
-25 E(14) ##2.500000E+01

The last two examples assume that the precision of the value to be
converted is 7, giving a default value of 6 for d.

A-Format

The form of an A-Format list is:

A or A(w)

where w is an integer constant that specifies the width of a field.

- 11 April 1980

S E C T I O N 8 I D R 4 0 3 1

A-Format Input Conversion: for input conversion, w must be specified.
The result is a character-string containing the next w characters from
the input stream file.

A-Format Output Conversion: for output conversion, an arithmetic or
string value given by the PUT statement's list is converted to a
c h a r a c t e r - s t r i n g u s i n g t h e n o r m a l r u l e s f o r c o n v e r s i o n t o
character-string. If w is omitted, it is taken to be the length of
this character-string. The string is placed left justified into a
field of w blanks.

B-Format

The form of a B-Format list is:

B or B(w)
Bl or Bl(w)
B2 or B2(w)
B3 or B3(w)
B4 or B4(w)

where w is an integer* constant that specifies the width of a field.

B-Format Input Conversion: for input conversion, w must be specified.
The next w characters from the input stream are converted to a
bit-string, just as if they had appeared in a bit-string constant that
was followed by B, Bl, B2, B3, or B4. See Section 3 for a table that
gives the valid characters and their translation to bits. If the field
of w characters contains an invalid character, the ERROR condition is
s igna l led .

B-Format Output Conversion: for output conversion, an arithmetic or
string value given by the PUT statement's list is converted to a
bit-string using the normal rules for conversion to bit-strings. The
resulting bit-string is then padded on the left with sufficient zero
bits to make it a multiple of k bits in length, where k is the 1, 2, 3,
or 4 following the B in the format code. The padded bit-string is then
converted to a character string of length n, where n is the length of
the padded string divided by k. (Each k bits are converted to one
character as shown in the table given in Section 3.) If w is omitted,
w is the length of this character-string. The character-string is
right justified in a field of w blanks. The value of w must be
sufficient to hold all of the characters in the string. Examples:

R E V . 0 8 - 1 2

I D R 4 0 3 1 C O N V E R S I O N S

V a l u e F o r m a t F i e l d

'00'B 00
' l ' B B(4) ###1
" B B(4) ####
'1101'B B2(2) 31
•110101'B B3(2) 65
'10011101'B B4(2) 9D
'10111'B B2(4) #113

P-Format

The form of a P-Format list is:

P 'picture'

where picture must be a valid picture as described in Section 3.

P-Format Input Conversion: for input, the next field of w characters
is assigned as a pictured value to the variable in the GET statement's
list. The number of characters, w, is the number of characters in the
picture, excluding any V characters.

P-Format Output Conversion: for output conversion, an arithmetic or
string value from the PUT statement's list is converted to a
fixed-point decimal value described by the picture. The decimal value
is then edited into an output field of w characters as if an assignment
had been made to the pictured field. See the discussion at end of this
section for a treatment of picture controlled conversion.

PICTURED TO ARITHMETIC CONVERSION

When a pictured value is converted to an arithmetic value, it is first
converted to a fixed-point decimal value whose precision is determined
by the picture as described in Section 3.

If the context that caused the conversion specified a different data
type, the fixed-point value is converted to another value that conforms
to the required data type using the normal rules for arithmetic to
arithmetic conversion.

PICTURED TO BIT-STRING CONVERSION

Pictured data is converted to bit-string data by first converting the
pictured value to a fixed-point decimal value and then converting the
decimal value to a bit-string using the rules given in this section for
arithmetic to bit-string conversion.

- 1 3 A p r i l 1 9 8 0

S E C T I O N 8 I D R 4 0 3 1

PICTURED TO CHARACTER-STRING CONVERSION

Pictured data is character-string data and is not converted when used
in a context that expects character-string data.

CONVERSION TO PICTURED DATA

When an arithmetic or string value is converted to a pictured value, it
is first converted to a fixed-point decimal value described by the
picture as explained in Section 3. The decimal value is then edited
into a character-string of length w, where w is the number of
characters in the picture, excluding any V characters.

If the fixed-point decimal value described by the picture is not
sufficient to retain all digits to the left of the decimal point, the
program is in error and may produce unpredictable results. If
fractional digits are lost, they are truncated.

The fixed-point decimal value is edited into the pictured result value
under control of the picture edit characters as described in Section 3.

If the fixed-point value is zero and the picture does not contain at
least one 9 character, the result is a field of w blanks or w asterisks
depending on whether or not an asterisk was used in the picture.

Negative values cannot be edited unless the picture contains at least
one sign picture character. Examples:

R E V . 0 8 - 1 4

IDR4031 CONVERSIONS

Value

5.2
0.01
0
1234
12345
123
-105.02
-105.02
-75
75
-20
20
-275.03
25.01
-7 .5
0
5
-75
.75
.75
0

Picture Result

zzzvzz ##520
zzzvzz ###01
zzz ###
zzzzv 1234
99999 12345
99999 00123
$**f***v#99 inva l i d
$**,***V.99CR $***105.02CR

y— #-7500
y— ##7500

-999 -020
-999 #020
$$$$$V.99- #$275.03-
$$$$$V.99- ##$25.01#
$$,$$$V.99DB ####$7.50DB
_****y#** * * * * * * * *
_****y§** #***5.00
_****y#** -**75.00
Z.VZZ ##75
ZV.ZZ #.75
ZZ$ ###

In the previous picture examples, the pound sign (#) represents a space
character.

- 15 April 1980

I D R 4 0 3 1 S T A T E M E N T S

SECTION 9

STATEMENTS

HOW TO READ THIS SECTION

Each statement is described by giving the general form or syntax of the
statement and by describing the effect of executing the statement. Any
restrictions imposed by the statement are explained and one or more
examples of each s tatement are shown. Square brackets ind icate
optional parts of statements and are not part of the punctuation of
s ta tements .

Unless a label prefix is required by a statement, it is not shown in
the general form of the statement.

ALLOCATE Statement

ALLOCATE name SET(reference);

Execution of an ALLOCATE statement causes a block of storage of
sufficient size to hold the values described by a based variable to be
allocated. The address of that block of storage is assigned to the
pointer variable referenced in the SET option.

The name must be a simple reference to a based nonmember variable. The
SET option must reference a pointer variable. See Section 4 for a
discussion of based storage. Example:

DECLARE TABLE(10) FLOAT BASED;
DECLARE P POINTER;

ALLOCATE TABLE SET(P);

Assignment Statement

target = expression;

target is either a variable reference or a pseudo-variable as defined
later in this section.

April 1980

S E C T I O N 9 I D R 4 0 3 1

Execution of an assignment statement evaluates the target reference and
the expression in an unspecified order, converts the expression's value
to the data type of the target, and assigns the converted value to the
target. The rules for conversion of data types are given in Section 8.
Examples:

A = B+C;

X(K) = 5;

P->NODE.VALUE = SQRT(X(J));

SUBSTR(S,I,J) = 'ABC;

String Assignment

Assignments to bit-string targets result in padding of the source value
on the right with sufficient zero bits to make it the length of the
target.

Assignments to nonvarying character-string targets result in padding of
the converted source value on the right with sufficient blanks to make
it the length of the target.

Assignment to a bit or character-string target that is shorter than the
converted source value causes truncation of the rightmost bits or
characters of the source value.

Assignment to a varying character-string target causes the target to
obtain a new current length of the newly assigned value.

Assignment Rules

If the target is a reference to an entire array or structure, the
expression must also be a reference to an entire array or structure
that is identical in size, shape, and component data types to the
target. In this case, the array or structure referenced by the
expression is copied into the storage of the target. No other form of
assignment involving arrays or structures is permitted.

If the target is a reference to a character-string variable and the
expression is also a reference to a character-string variable, the
target and the expression variables must not partially overlap each
other in storage such that the target begins to the right of the
source. This restriction also applies when either or both the target
and the expression are SUBSTR references. This restriction does not
forbid A = A; or A = A!!B; or A = SUBSTR (A, 2,3); but does forbid
SUBSTR(A,2,3) = A; and any equivalent assignment.

REV. o

I D R 4 0 3 1 S T A T E M E N T S

Because the target and the expression are evaluated in a unspecified
order, functions or on-units called during these evaluations must not
assign to subscripts or pointers used within the target reference.
Likewise, the storage of the target must not be freed by the execution
of a function or on-unit called during evaluation of the expression.

Programs that depend on the order of evaluation may fail when moved to
other implementations of PL/I.

PAGENO Pseudo-variable Assignment Statement

PAGENO(f) = e;

f must be a reference to a file name or to a file variable that has
been assigned a file value.

The file control block must be open and must describe a STREAM OUTPUT
PRINT file.

The expression e is evaluated and converted to a binary integer value
of implementation defined precision and is assigned as the current page
number of the file control block identified by f_. This assignment does
not cause any additional pages to be output on the file, it simply
changes the current page number that serves as the value of the PAGENO
built-in function. Example:

DECLARE F FILE;

PAGENO(F) = 10;

STRING Pseudo-variable Assignment Statement

STRING(r) = e;

r is a reference to a string, array, or structure variable. The
variable identified by r_ must be suitable for string overlay storage
sharing as described in Section 4."

The converted value of the expression e is assigned to r_ as if £ were a
nonvarying string variable whose length is the total number of
characters or bits in the variable identified by r_. Example:

DECLARE A(5) CHARACTER(1);

STRING(A) = 'ABCDE';

After this assignment, A(l) has the value of 'A', A(2) has the value of
•B', etc.

April 1980

S E C T I O N 9 I D R 4 0 3 1

SUBSTR Pseudo-variable Assignment Statement

SUBSTR(r,i,j) = e;
or

SUBSTR(r,i) = e;

£ must be a reference to a character or bit-string variable and _i and j_
must be fixed-point integer-valued expressions. If r_ identifies a
varying character-string, it must have a current value. In that case,
let w be the current length of £. If r_ identifies a nonvarying string,
w is the declared length of the string variable. If j is omitted, it
is assumed to equal w - _i + 1. The following restrictions on £, _j, and
w must be satisfied or the program is in error and produces
unpredictable results:

K=i<=w + 1
i + j -K -w

These restrictions ensure either that _i is the index of a character or
bit within the string and that a substring of J_ characters or bits
beginning with the ith character or bit can be accessed without
exceeding the length of the string, or that i_ is one greater than the
length of the string and j_ is zero. If j_ is omitted, the substring
begins with the ith character or bit and extends to the end of the
string. No other portion of the target string is affected by the
assignment.

The substring described by i_ and j_ is assigned the converted value of
the expression e as if the substring were a nonvarying string.
Example:

DECLARE S CHARACTER (10);

SUBSTR(S,3,4) = 'ABC-

After the assignment, the third character of S is 'A', the fourth is
'B', the fifth is 'C, and the sixth.is blank. The other characters of
S are unchanged by the assignment.

UNSPEC Pseudo-variable Assignment Statement

UNSPEC(r) = e;

where £ is a reference to any variable except an array or structure.

The express ion e i s eva lua ted and conver ted to an
implementation-defined bit-string that is copied into the storage of £.
Subsequent use of £ is invalid unless the bit-string is a valid value
for that variable.

REV. 0

I D R 4 0 3 1 S T A T E M E N T S

Use of the UNSPEC pseudo-variable is a poor programming practice that
makes a program dependent on the implementation and prevents the
program from being moved to another implementation of PL/I. Example:

UNSPEC(C) = '0'B;

After this assignment, the storage of C contains zero bits.

BEGIN Statement

BEGIN;

Execution of a BEGIN statement causes a block activation of the BEGIN
block defined by the BEGIN statement. The block activation is
terminated when the corresponding END statement is executed, or it may
be terminated by execution of a GOTO or RETURN statement. (RETURN
returns from the containing procedure, not from the BEGIN block.)

A BEGIN statement defines a BEGIN block and is an executable statement
that may appear as a THEN clause or ELSE clause of an IF statement, as
an on-unit of an ON statement, or as a simple statement anywhere in a
procedure.

Unless a BEGIN block is an on-unit or contains declarations whose scope
must be limited by the BEGIN block, it should not be used because it
consumes more computer time than does a simple DO group that could be
used in its place. Examples:

BEGIN;

END;

ON ERROR
BEGIN;

END;

April 1980

S E C T I O N 9 I D R 4 0 3 1

CALL Statement

CALL reference;

Execution of a CALL statement creates a block activation of the
procedure identified by the reference. The reference must be an entry
name, entry variable, or entry-valued function. The procedure
designated by that entry value is called and passed any arguments given
with the reference. The procedure thus activated must not have a
RETURNS option and must have the same number of parameters as the
reference has arguments. A procedure with no arguments may be called
using a reference with an empty argument list () or no argument list.

Each argument in the argument list is evaluated and, if necessary,
converted to the data type of the corresponding parameter. See Section
4 for a discussion of argument passing and parameters.

The order in which arguments and other components of the reference in a
CALL statement are evaluated is undefined and may vary from one
implementation of PL/I to the next. Examples:

CALL E(A,B,5+X);
CALL F;
CALL G ();

CLOSE Statement

CLOSE FILE(reference) ;

Execution of a CLOSE statement closes the file control block identified
by the reference. The reference must identify a file name, file
variable, or file-valued function.

Closing a closed file has no effect and is not an error.

Once closed, the file control block may be reopened and given different
file attributes and may be used to designate a different operating
system file or device. Examples:

CLOSE FILE(F);
CLOSE FILE(G(K));

REV. 0

I D R 4 0 3 1 S T A T E M E N T S

DECLARE Statement

DECLARE variable attributes;
or

DECLARE (variable-list) attributes;

Execution of a DECLARE statement has no effect. A DECLARE statement
cannot be used as a THEN clause or ELSE clause of an IF statement or as
the on-unit of an ON statement. A DECLARE statement cannot have a
label prefix.

The purpose of a DECLARE statement is to declare the names of
variables, external procedures, and files. It is discussed more fully
in Section 5. Examples:

DECLARE (A,B,C) FIXED BINARY(15);
DECLARE F FILE;

DELETE Statement

DELETE FILE(reference) [KEY(expression)];

The FILE and KEY options may be given in any order.

Execution of a DELETE statement deletes a record from a KEYED
SEQUENTIAL UPDATE file. The reference must identify a file value whose
associated file control block has been opened with the KEYED,
SEQUENTIAL, and UPDATE attributes. The key option is specified, the
key expression is evaluated and converted to a varying character-string
whose length is implementation defined. If a record with that key does
not exist, the KEY condition is signalled. Return from a KEY condition
on-unit resumes execution with the statement following the DELETE
statement.

If the KEY clause is omitted, the current record of the file is
d eleted. Examples:

DELETE FILE(F) KEY(25);
DELETE KEY(C|I'.OLD') FILE(G);

DO Statement

There are four kinds of DO statements: simple-do, do-while, do-repeat,
and iterative-do.

All DO statements define a group of statements called a do-group that
begins with the DO statement and ends with the corresponding END
statement.

April 1980

S E C T I O N 9 I D R 4 0 3 1

A do-group is executed a variable number of times under the control of
its DO statement as explained later in this section.

A DO statement cannot be used as an on-unit, but can appear anywhere
within a procedure or BEGIN block, including a THEN or ELSE clause of
an IF statement.

In the discussions that follow, we assume that the do-group does not
transfer control out of the group or skip statements within the group
when we say that the statements of the group are executed once, twice,
n times, etc. However, any do-group may contain IF statements, other
do-groups, RETURN, or GOTO statements that alter the order of
execution.

If control is transferred out of non-simple do-group, control cannot be
transferred back into the group. Likewise, control cannot initially be
transferred into a non-simple do-group except by execution of its DO
statement.

Simple-do Statement

DO;

Execution of a simple DO statement causes the statements in the
do-group to be executed once. Control may be transferred into a simple
do-group by a GOTO statement.

Do-while Statement

DO WHILE(expression) ;

Execution of a do-while statement causes the expression to be evaluated
to produce a value b that must be a bit-string of length one. If b is
true, the statements of the group are executed and when the
corresponding END statement is executed, control is transferred back to
reevaluate the expression and test the new value of b. If b is false,
the statements in the group are not executed and execution resumes with
the statement following the END statement. Example:

K = 1;
DO WHILE(K<=10);

K = K+l;
END;

This do-group is executed 10 times.

REV. 0

I D R 4 0 3 1 S T A T E M E N T S

Do-repeat Statement

DO index = start REPEAT next [WHILE(test)];

index is a variable reference, and start, next, and test are
expressions.

Execution of a do-repeat causes the start expression to be evaluated
and assigned to the index variable. If a WHILE option is given, the
test expression is then evaluated to produce a value b that must be a
bit-string of length one. If b is false, execution resumes with the
statement following the corresponding END statement. If b is true or
if a WHILE option is not given, the statements of the group are
executed. When control reaches the END statement, the next expression
contained in the REPEAT option is evaluated and assigned to the index
variable. Any WHILE option is again evaluated and if it is true or not
present, the group is executed again.

Index must be a reference to a variable whose data type makes it a
suitable target for assignment of both start and next. Both start and
next may be expressions of any data type, provided that they both can
be assigned to index.

Note

Unless a WHILE is given, the loop repeats indefinitely.

The index reference is not completely reevaluated each time that a next
value is assigned to it. The original values of any subscripts,
pointer qualifiers, or string lengths, used in index are used in all
subsequent assignments of next values. The next and test expressions
are completely re-evaluated each time.

The index variable must not be an array or structure, but it may be a
reference to an element of an array or a member of a structure.
Example:

DECLARE (HEAD,P) POINTER;
DECLARE 1 NODE BASED,

2 VALUE FLOAT,
2 NEXT POINTER;

DO P = HEAD REPEAT(P->NODE.NEXT) WHILE(P~=NULL);

END;

This do-group is repeatedly executed for each non-null pointer in the
chain of nodes rooted in the pointer HEAD.

April 1980

S E C T I O N 9 I D R 4 0 3 1

Iterative-do Statement

DO index = start [TO finish] [BY increment] [WHILE(test)];

index is a variable reference, and start, finish, increment, and test
are expressions.

Execution of an iterative-do causes the start, finish, and increment
expressions as well as the index reference to be evaluated in an
unspecified order. Once evaluated, the finish and increment values are
used throughout execution of the group and are not reevaluated. The
subscripts, pointers, etc., in the index reference are also not
reevaluated.

The start value is converted, if necessary, to the data type of the
index variable and the converted value is assigned to the index
var iab le .

If a WHILE option is given, the test expression is evaluated to produce
a value b that must be a bit-string of length one. If b is false,
execution resumes with the statement following the END statement.

If b is true or a WHILE option is not given, the value of the index
variable is compared to the finish value. If the increment is positive
or zero and if the index value is greater than the finish value,
execution resumes with the statement following the END statement.

If the increment is negative and the index value is less than the
finish value, execution resumes with the statement following the END
statement.

If none of the above conditions caused execution of the group to
terminate, the statements of the group are executed, the increment
value is added to the index variable and any WHILE test is reevaluated.
The new values of b and index are then used to determine if the group
should be executed again.

The TO and BY options may be given any order followed by the WHILE
option. Either the TO or the BY option may be omitted. If the BY
option is omitted, a default increment of one is supplied. If the TO
is omitted, index is not compared against any limit and the group
repeats indefinitely unless stopped by the WHILE.

Note

If both the TO option and the WHILE option are omitted, the
do-group -repeais^^ij^defirnitel/y.

R E V . 0 9 - 1 0

I D R 4 0 3 1 S T A T E M E N T S

The start, finish, and increment expressions must produce integer
fixed-point values. The index must be a reference to a fixed-point
integer variable. Examples:

DO K = 1 TO 10;

/* EXECUTES 10 TIMES */

END;

DO K = 10 TO 1 BY -1;

/* EXECUTES 10 TIMES */

END;

DO K = 1 TO 10 WHILE(B<0);

END;

DO A(J) = B+l TO N BY -M WHILE(T);

END;

All executions of the last example use the same element of A as the
index, even if J has been altered by the execution of the group. They
also all use the initial values of B+l, N and -M. However, T is
repeatedly evaluated.

END Statement

END [name];

The END statement terminates a DO group, BEGIN block, or PROCEDURE
block.

Execution of an END statement that closes a do-group may cause the
group to be repeated depending on the DO statement that heads the
group. See the description of DO in the preceding paragraphs.

Execution of an END statement that closes a procedure is valid only if
the PROCEDURE statement does not contain a RETURNS option. The END
statement terminates the current block activation and returns control
to the statement following the CALL statement that called this
proced ure.

- 1 1 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

Execution of an END statement that closes a BEGIN block causes
termination of the current block activation and resumes execution of
the previous block activation with the statement following the END
statement.

If the BEGIN block is an on-unit, control returns to the source of the
signal. This is not possible if the on-unit has been established for
the ERROR condition. An attempt to return to the source of the ERROR
condition terminates execution of the program and produces an
execution-time error message.

An END statement may have a label prefix and can be referenced by a
GOTO statement, including GOTO statements contained within the do-group
or block closed by the END statement.

If a name is given, it must be the same name that occurs in the label
prefix of the corresponding DO, BEGIN or PROCEDURE statement. If it is
not the same name, the compiler issues an error message.

An END statement cannot appear as a THEN clause, ELSE clause, or
on-unit. Examples:

P: PROCEDURE;
DO K=l TO 10;

END;
END P;

FORMAT Statement

name: FORMAT (fo rmat-1 i st) ;

Execution of a FORMAT statement has no effect unless it occurs as a
consequence of the execution of a GET or PUT statement.

A FORMAT statement must have an unsubscripted label prefix that serves
as the format name. A format name is not a statement label and cannot
be used by a GOTO statement.

R E V . 0 9 - 1 2

I D R 4 0 3 1 S T A T E M E N T S

A format-list is used during the execution of a GET or PUT statement to
control the transmission of data to or from a stream I/O file. It
consists of a list of format-it ems separated by commas. Each
format-item may have an optional repetition factor consisting of an
integer constant k whose value is 0<=k<=255. Each format-item is one
of the following:

(fo rma t - l i s t)
A(w) or A
B(w) or B
Bl(w) or Bl
B2(w) or B2
B3(w) or B3
B4(w) or B4
E(w) or E(w,d)
F(w) or F(w,d)
P 'picture'
R(name)
COLUMN(n) or COL(n)
LINE(n)
PAGE
SKIP or SKIP(n)
TAB or TAB(n)
X(n)

Each w, d, or n is an integer constant whose value k. must be 0<=k<=255,
un less fu r the r - res t r i c ted by the defin i t i on o f a pa r t i cu la r
format-item.

Each time control passes to a format-list, all format-items between the
last used format-item and the next data format-item are evaluated. The
next data format-item is then used to control the conversion of the
data being transmitted to or from the stream file.

If control reaches the end of a format-list in a FORMAT statement,
control returns to the R-format that transferred control to the FORMAT
statement.

If control reaches the end of a format-list in a GET or PUT statement,
and one or more values remain to be transmitted in the statement's I/O
list, control transfers to the beginning of the format-list.

The following sections describe the effect of each format-item.

Nested Format-lists

If a parenthesized format-list is used as a format-item, it is used as
many times as specified by its repeat count. Each time that control
reaches the end of the parenthesized format-list, the repeat count is
reduced by one and the entire list is repeated until the count is zero.
Example:

F: FORMAT(F(10,4),2(A(5),E(14,3)) ,SKIP);

9 - 1 3 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

This example is equivalent to:

F: FORMAT(F(10,4),A(5),E(14,3),A(5),E(14,3) ,SKIP);

Data Formats

The data formats are A, B, Bl, B2, B3, B4, E, F, and P. They control
the transmission and conversion of a value to or from a stream file.
Each data format causes w characters to be read from an input stream or
written to an output stream, where w is the field width given in the
format or calculated during the conversion and given by the conversion
rules in Section 8.

If fewer than w characters remain in an input line, any characters
remaining on that line are read and a new line is obtained. Additional
characters are then read from the new line so that a total of w
characters are read.

If fewer than w characters remain in an output line, as many characters
as fit are written on that line and a new line is begun. Any remaining
characters are written onto the new line so that a total of w
characters are written.

See Section 8 for a detailed description of how each data format
controls conversion of a value.

R(format-name)

An R-format transfers control to the format-list of the FORMAT
statement whose name appears in the R-format. The effect of this
transfer is as if the format-list of the FORMAT statement were called
as a subroutine, i.e. when the remote format-list is exhausted,
control returns to the R-format and is passed to the format-item
following the R-format. Example:

F: F0RMAT(A,X(3));
PUT EDIT(P,Q) (R(F),E(14,3));

The value of P is transmitted by the A format contained in the FORMAT
statement. Transmission of Q finishes the remote format list by
evaluating the X control format and returns to use the E format to
transmit the value of Q.

COLUMN(n) or COL(n)

A COLUMN format puts blanks into an output stream or skips characters
of an input stream so that the next character is be read or written
into column n of a line.

R E V . 0 9 - 1 4

I D R 4 0 3 1 S T A T E M E N T S

If the current output line contains exactly n-1 characters, no output
is performed and the next output begins in column n of the current
l i n e .

If the current output line contains less than n-1 characters and n is
less or equal to the line size, sufficient blanks are placed into the
current line to cause the next output to begin in column n.

If the current output line contains less than n-1 characters and n is
greater than the line size of this file, the current line is written
and a new line is begun. The next output begins in column 1 of the new
l i n e .

If the current output line already contains more than n characters, it
is written to the stream file and a new line is begun. If n is greater
than the line size of this file, no blanks are placed into the new
line; otherwise, n-1 blanks are placed into the new line causing the
next output to begin in column n of the line.

If the current input line is positioned such that the next character to
be read is located in column n, no characters are skipped.

If the current input line is positioned such that the current column is
less than column n and n does not exceed the size of the current line,
sufficient characters of the line are skipped so that the next input
occurs from column n.

If the current input line is positioned such that the current column is
less than column n, but n exceeds the size of the current line, or if
the current column is greater than column n, a new line is read. If n
exceeds the size of the new line, no characters are skipped and the
next input occurs from column 1; otherwise, n-1 characters are skipped
causing the next input to occur from column n.

The value n must be greater than zero.

COL(n) COLUMN LINENO NEW COLUMN NEW LINENO

25 25 25
24 25 24
26 25 26
30 25

These examples assume a linesize S that is 26<=S<30.

LINE(n)

A LINE format can only be used to control output to a stream file that
has been opened with the PRINT attribute and that, consequently, has a
page size. It positions the stream file to a specified line relative
to the top of a page.

- 1 5 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

If the current line number is less than n and n does not exceed the
page size, sufficient lines are written to the output so that the
current line is line number n.

If the current line number is greater than n or if n exceeds the page
size, the remainder of the page is filled with empty lines and the
ENDPAGE condition is signalled, unless the current line number already
exceeds the page size. In that case, a new page is begun without
signalling the ENDPAGE condition.

If n equals the current line and the current column is one, no output
occurs. If n equals the current line, but the current column is not
one, the remainder of the page is filled with blank lines and the
ENDPAGE condition is signalled, unless the current line number already
exceeds the page size. In that case, a new page is begun without
signalling the ENDPAGE condition.

The value n must be greater than zero.

PAGE

A PAGE format can only be used to control output to a stream file that
has been opened with the PRINT attribute. It positions the stream to
the top of a new page and thereby resets the line number to one and
increases the page number by one.

SKIP(n) or SKIP

A SKIP format applied to an input stream skips the rest of the current
input line and n-1 subsequent lines, i.e., it skips over n line
boundaries.

A SKIP format applied to an output stream writes the current line and
n-1 empty lines, i.e., it writes n line boundaries.

If n is omitted, a value of one is supplied. The value of n must be
greater than zero.

If the output stream file has been opened with the PRINT attribute and
if the total number of lines written as a result of a SKIP would exceed
the page size, the current line is written, followed by sufficient
empty lines to fill the page, and the ENDPAGE condition is signalled.

R E V . 0 9 - 1 6

I D R 4 0 3 1 S T A T E M E N T S

TAB(n) or TAB

A TAB format can only be used to control output to a stream file opened
with the PRINT attribute. It causes sufficient blanks to be placed
into the current line to position it to the nth tab stop relative to
the current column of the line. The relative positions of tabs are
implementation defined and may or may not be at constant intervals from
each other.

If the current column is a tab stop, a TAB produces sufficient blanks
to cause the next output to begin at the next tab stop.

If n tab stops do not remain on the current line, the current line is
written and a new line begun. If the first tab stop is not in column
1, sufficient blanks are placed into this line to position it to the
first tab stop.

The line size must not be less than the first tab stop if TAB formats
are used. If n is omitted, a default value of one is supplied. The
value of n must be greater than zero.

X(n)

The X format writes n blanks to the current output stream or skips n
characters in the current input stream.

If less than n characters remain in the current line, the remaining
characters are skipped on input or written as blanks on output, and
additional characters are skipped or written as blanks on the next line
so that a total of n characters are written or skipped.

The value of n must be greater than zero.

FREE Statement

FREE reference;

Execution of a FREE statement frees the block of storage that is
identified by the reference. The reference must be a reference to a
based variable and the pointer qualifier used explicitly or implicitly
by the reference must point to a block of storage allocated by
execution of an ALLOCATE statement.

The reference must not be subscripted and must identify a nonmember
based variable whose size, shape and component data types are the same
as were used when the storage was allocated.

- 1 7 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

Once freed, a block of storage must not be referenced. Any pointers
that address the block are invalid and must not be used. Violation of
this rule produces unpredictable results. Example:

DECLARE TABLE(100) FLOAT BASED;
DECLARE P POINTER;

ALLOCATE TABLE SET(P);

FREE P-XTABLE;

The FREE statement frees the storage block allocated by the ALLOCATE
statement.

GET Statement

GET [FILE(f)] [SKIP[(n)]] LIST(input-list) ;
or

GET [FILE(f)] [SKIP[(n)]] EDIT(input-list) (format-list);

input- l ist is input- i tem [, input- i tem]...

An input-item is either a:

va r i able-re fe r ence
or

(input-list iterative-do)
format-list is defined in this section in the discussion of the FORMAT
statement.

The FILE, SKIP, and LIST options or the FILE, SKIP, and EDIT options
may be given in any order, but a format-list is part of the EDIT option
and must immediately follow the input-list. If SKIP is given without
(n) , a value of one is supplied. If FILE is not given, FILE (SYSIN) is
supplied by default.

Note

No comma separates the iterative-do from its associated
i n p u t - l i s t .

An input-list consisting of one iterative-do has two sets of
parentheses. Example:

GET FILE(F) LIST((A(K),B(K) DO K = 1 TO 10));

R E V . 0 9 - 1 8

I D R 4 0 3 1 S T A T E M E N T S

The FILE option must reference a file value whose associated file
control block has either been opened as a STREAM input file, or is
closed. If closed, it is opened by the GET statement (see Section 2
and Section 9) and given the STREAM and INPUT attributes.

The expression in the SKIP option must produce a positive fixed-point
integer value n. The SKIP option skips across n line boundaries and
resets the current column to one.

After any SKIP option has been evaluated, the input-list is evaluated
together with any format-list.

The inpu t - l i s t i s eva lua ted f rom le f t - to - r igh t . Each va r iab le
reference may be either an array reference, structure reference, or
scalar variable reference.

A scalar variable reference causes one value to be transmitted from the
input stream and, if EDIT is specified, it uses one data format. An
array variable causes n values to be transmitted where n is the number
of elements in the array. If EDIT is specified, it uses n data
formats. Values are transmitted to the array in row-major order as
defined under ARRAYS in Section 3. A structure variable causes all
members of the structure and members of all contained substructures to
receive a value. The values are transmitted in left-to-right order.
If EDIT is specified, each value requires a data-format.

Only arithmetic, pictured, and string values can be transmitted by a
GET statement.

A parenthesized input-list containing an iterative-do transmits values
under control of the iterative-do as if it were a do-group. Examples:

DECLARE A(10) FLOAT;
DECLARE (B,C) FLOAT;

GET FILE(F) LIST(A,B,C);
GET FILE(F) EDIT(A(K),K,B(K)) (3E(14,6));
GET FILE(F) LIST(B,(A(K) DO K = 1 TO 5) ,C) ;

The first GET statement transmits 10 values to the array A and then
transmits values to B and C in that order.

The second GET statement transmits a value to A(K) , transmits a value
to K, and then transmits a value to B(K) using the new value of K as a
subscript. All three values are transmitted using the same E format.

The last example transmits a value to B, transmits values to A(l),
A(2), A(3) , A(4) , and A(5), and to C in that order.

1 9 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

The number of lines read by a GET statement is determined by the size
of the list, the SKIP option, and any control formats given in the
format-list. However, unless control items or SKIP forces new lines to
be read, transmission begins with the current position of the current
line and uses as many lines as are necessary to satisfy the input-list.

List-directed Input

A LIST option specifies list-directed input. It causes each value
expected by the input-list to be read from the stream file without the
use of a format-item.

For list-directed input, the stream file must contain a sequence of
fields each of which is followed by a blank or a comma. Excess blanks
may occur between fields.

A field whose value is to be assigned to an arithmetic, pictured, or
bit-string variable x must contain an optionally signed constant of the
same form as could appear on the right side of an assignment statement
whose target was X.

A field whose value is to be assigned to a character-string variable
begins with the next nonblank character in the stream. If that
character is a quote ('), the field is treated as a character-string
constant and ends with the matching quote (which must be followed by a
blank or comma); otherwise, it ends with the character immediately
before the next blank or comma. If the entire field is a valid
character-string constant, its value is assigned to the list variable;
otherwise, all characters of the field are assigned without conversion
to the list variable.

An empty field is a field terminated by a comma and contains only
blanks or contains no characters. Examples:

,5#
ft ft, ft,,

The last line contains two empty fields (assuming that the previous
field was terminated by a blank) . .

An empty field causes no assignment to its corresponding list variable.

Note that all fields, including the last field in a file, must be
followed by a blank or a comma.

A field may be split across two or more lines, i.e. a line boundary
does not terminate a field. However, to facilitate input from certain
devices such as on-line terminals, an implementation may insert a blank
at the end of each line read from a terminal and thereby prevent a
field from continuing onto another line.

R E V . 0 9 - 2 0

I D R 4 0 3 1 S T A T E M E N T S

Multiple blanks following a field are scanned when the field is read
and the stream is positioned at the next nonblank or end of the line,
whichever occurs first. Examples:

GET FILE(F) LIST(A,B);
GET FILE(F) LIST(C);

If the stream contains:

#52#1.07E+5#ABC
X#7

A is assigned 52, B is assigned 1.07E+5, and C is assigned 'ABCX'. The
position of the file after the second GET statement is executed is
column 3. If the second line only contained two columns, the stream
would be positioned at the end of the line such that any subsequent
input would read a new line or detect end of file if no lines remained.
If the 7 on the second line had been a comma, it would be ignored by
the next GET list operation, but would be read if the next operation
was GET EDIT.

Edit-directed Input

An EDIT option specifies edit-directed input. It uses a format-list to
control scanning of the input stream and conversion of fields. Each
field is first converted under control of a data format and the
converted value is then assigned to the corresponding list variable.
An additional conversion may occur as part of that assignment.

See Section 8 for a description of each data format conversion and see
the discussion of the FORMAT statement in this section for a
description of format-list evaluation. Example:

GET FILE(F) EDIT(A,B,C) (E(14,3),SKIP,F(10));
GET FILE(F) EDIT(D) (A(10));

A is assigned the field converted by E(14,3), a new line is read by
SKIP, B is assigned the field converted by F(10) , and C is assigned the
next field converted by E(14,3). The SKIP is not evaluated a second
time because no variables remain in the list. D receives a value from
the field converted by A(10). That field is the 10 characters that
immediately follow the second field converted by E(14,3) and assigned
to C.

GO TO Statement

GO TO reference;

or

GOTO reference;

9 - 2 1 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

Execution of a GOTO statement transfers control to the statement
designated by the reference. The reference must identify a label
value.

If the label value is a label variable or label-valued function, its
value must designate a statement in a currently active block and the
value must also designate a stack frame belonging to a block activation
of that block.

If the statement to which control is transferred is not within the
current block, the current block activation is terminated as are all
previous block activations back to the block containing the statement.
That block activation is made current, and control is transferred to
the statement.

See Section 3 for a more complete discussion of label values.
Examples:

GOTO L;
GOTO CASE(K);
GO TO L;

IF Statement

IF expression THEN clause [ELSE clause]

clause is either a BEGIN block, do-group, or statement other than END,
PROCEDURE, DECLARE, or FORMAT.

Execution of an IF statement causes the expression to be evaluated to
produce a value b, that must be a bit-string of length one. If b is
'l'B, the THEN clause is executed; otherwise, the ELSE clause is
executed if specified.

When execution of a THEN clause is complete, the statement following
the IF statement is executed. If b is '0'B and no ELSE is given, the
statement following the IF statement is executed.

When IF statements are used as a THEN or ELSE clause of another IF, any
ELSE is always matched with the nearest preceding THEN. Example:

IF A>B
THEN IF OD

THEN X = 5;
ELSE X = 10;

R E V . 0 9 - 2 2

I D R 4 0 3 1 S T A T E M E N T S

If an ELSE is to be associated with the first THEN, an ELSE clause (or
an empty ELSE) must be written with the second THEN:

IF A>B
THEN IF OD

THEN X = 5;
ELSE;

ELSE X = 10;

A statement appearing as a THEN or ELSE clause must not have a label
prefix. However, a BEGIN block or do-group used as a clause may
contain labeled statements.

Null Statement

Execution of a null statement has no effect. Null statements are used
to provide null THEN or ELSE clauses in IF statements, null on-units in
CN statements, or to allow multiple label prefixes. Examples:

A : ;
B : ;
C: ON ENDPAGE (F) ;

The ON statement has a null on-unit and is preceded by two labeled null
statements effectively giving the ON statement three labels. However,
these labels do not compare equal because they designate different
statements.

ON Statement

ON condition-name on-unit;

on-unit is a BEGIN block or a statement other than PROCEDURE, DO, END,
DECLARE, FORMAT, or RETURN. Condition-name is ERROR, ENDFILE(f),
ENDPAGE(f) , or KEY(f).

Execution of an ON statement establishes the on-unit as if it were a
procedure that is to be called when the condition is signalled. It
does not execute the on-unit.

If an on-unit for this condition has already been established in the
current block activation, it is replaced by this on-unit.

An on-unit remains established until it is replaced by another, until
it is reverted by a REVERT statement, or until the block activation in
which it was established is terminated.

- 2 3 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

When a condition is signalled, each block activation beginning with the
current block activation is examined to see if it has an established
on-unit for the condition. If it does not, the previous block
activation is examined, etc., until an on-unit for the condition is
found. If no on-units exists, a default on-unit is invoked. The
default on-unit for KEY or ENDFILE signals the ERROR condition. The
default on-unit for ENDPAGE puts a new page. The default on-unit for
ERROR writes an error message and terminates program execution.

The consequence of this mechanism is that a block may establish its own
on-unit for a condition or may choose to let its caller's on-unit
handle the condition. Any on-unit established by a block is reverted
when the block returns to its caller or is otherwise terminated.

A signal causes an on-unit to be called just as if it were a procedure
that had no parameters. The block activation resulting from this call
is terminated when the on-unit executes a GOTO or executes its END
statement. In the latter case, control returns to the source of the
signal. On-units for the ERROR condition cannot return to the source
of the signal. An attempt to do so produces an execution-time error
message and terminates program execution.

A GOTO executed within an on-unit and transferring control out of the
on-unit terminates the block activation of the on-unit and any block
activations back to, but not including, the activation of the block to
which control is transferred.

See Section 2 for a discussion of block activation and for a discussion
of exception handling.

The I/O conditions of ENDFILE, ENDPAGE, and KEY are uniquely
established for each file control block and are always written with a
reference _f that must identify a file value. The condition thus
referenced is e ffec t ive ly qua l ified by the fi le cont ro l b lock
associated with _f.

This means that ENDFILE(F) and ENDFILE(G) are different conditions if F
and G identify different file control blocks, but are the same
condition if F and G identify the same file control block.

Just before these conditions are signalled, the value of ONFILE is set
to the file-id of the file control block for which the condition is
being signalled.

An on-unit must not have a label prefix.

ENDFILE(f) Condition

The ENDFILE condition is signalled when an attempt is made to read past
the end of a file. The end-of-file status of the file control block
remains set so that subsequent reads also cause the signal to occur.

R E V . 0 9 - 2 4

I D R 4 0 3 1 S T A T E M E N T S

Returning from the on-unit transfers control to the statement following
the GET or READ statement.

The defau l t on-un i t wr i tes an er ror message onto an
implementation-defined error file and signals the ERROR condition.

ENDPAGE(f) Condition

The ENDPAGE condition is signalled when the line to be written has a
line number that is one greater than the page size of the STREAM OUTPUT
PRINT file identified by f.

If an on-unit returns without writing a new page, the line number of
the file increases indefinitely and the ENDPAGE condition is not
signalled by subsequent output. However, if a new page is written by
the on-unit or at any time later, it resets the line number and allows
ENDPAGE to be signalled the next time that the line number is one
greater than the page size.

Returning from the on-unit returns to the point where the signal
occurred and any additional output is then written to the stream.

The default on-unit puts a new page and returns.

ERROR Condition

The ERROR condition is signalled whenever the implementation detects an
error. Just prior to signalling the condition, the value of the ONCODE
built-in function is set to an implementation-defined integer value
that serves as an error code indicating which error occurred.

Returning from the on-unit produces an error message and terminates
program execution.

T h e d e f a u l t o n - u n i t w r i t e s a n e r r o r m e s s a g e o n a n
implementation-defined error file and terminates program execution.

KEY(f) Condition

The KEY condition is signalled when a READ, REWRITE, or DELETE
statement containing a KEY option cannot find a record with the
specified key. It is also signalled by a WRITE statement whose KEYFROM
option specifies a key of an existing record.
Just before the condition is signalled, the key value is assigned as
the value to be returned by the ONKEY built-in function.

Returning from the on-unit resumes execution with the statement
following the record I/O statement.

- 2 5 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

T h e d e f a u l t o n - u n i t w r i t e s a n e r r o r m e s s a g e o n a n
implementation-defined error file and signals the ERROR condition.

OPEN Statement

OPEN FILE(f) [TITLE(s)] [LINESIZE(n)] [PAGESIZE(m)] [STREAM]
[RECORD] [INPUT] [OUTPUT] [UPDATE] [PRINT] [KEYED] [SEQUENTIAL]
[DIRECT];

The options and attributes may be specified in any order.

Execution of an OPEN statement causes the file control block identified
by _f to be opened with the line size, page size, and attributes
specified in the OPEN statement. If specified, n and m must be
expressions that produce fixed-point positive integer values.

The FILE option must be specified and £ must be a reference that
produces a file value. If the file control block identified by _f is
already open, the OPEN statement is ignored, even if its attributes
disagree with those of the file control block.

If no TITLE option is specified, the file control block is connected to
a file or device known to the operating system using the file-id as the
title. (The file-id of a file control block is the name of the file
constant that owns the control block as explained under Fi les in
Section 2.) If a TITLE is specified, s must be an expression that
produces a character-str ing value. The character-str ing is used to
identify a file or device known to the operating system. Because the
title is used by the operating system, it has an implementation-defined
format that may include such information as the name of the file, its
record size, or accessing mode, etc.

The attributes specified in an OPEN statement may be an incomplete set.
The attribute set is made complete by first adding attributes given in
the declaration of the file, then supplying implied attributes and then
supplying default attributes. See Section 2 and Section 5. The final
set of attributes must be one of the consistent sets defined below.

St ream-at t r ibu tes are :

STREAM INPUT
STREAM OUTPUT [PRINT]

Record-a t t r ibu tes are :

RECORD INPUT SEQUENTIAL [KEYED]
RECORD INPUT DIRECT KEYED
RECORD OUTPUT SEQUENTIAL [KEYED]
RECORD OUTPUT DIRECT KEYED
RECORD UPDATE SEQUENTIAL KEYED
RECORD UPDATE DIRECT KEYED

R E V . 0 9 - 2 6

I D R 4 0 3 1 S T A T E M E N T S

Examples

OPEN FILE(F) STREAM INPUT;
OPEN FILE(F) TITLE ('MASTER_FILE.NEW') UPDATE;
OPEN FILE(G) LINESIZE(80) PAGESIZE(60) STREAM OUTPUT PRINT;

PROCEDURE Statement

name: PROCEDURE[(parameter-list)] [RETURNS(t)] [RECURSIVE] [OPTIONS
(MAIN)];

The parameter-list is:

name [,name]...

and t is a list of data type attributes.

The RETURNS, RECURSIVE and OPTIONS (MAIN) options may be specified in
any order.
Execution of a PROCEDURE statement as a consequence of the normal flow
of control from the previous statement has no effect and execution
resumes with the statement following the procedure's END statement.

A PROCEDURE statement defines a procedure that consists of a block of
statements closed by the procedure's corresponding END statement. The
PROCEDURE statement must have a label prefix that declares the name of
the procedure. That declaration is established in the block which
contains the PROCEDURE statement, and consequently makes the name known
in that block as well as all contained blocks. The procedure's END
statement should contain the name of the procedure so that it can be
easily identified as the closing END statement.

Each name in the parameter-list must be declared within the procedure
and must not be a member of a structure and must not be declared with a
storage class attribute.

Every call to the procedure must be made with an argument list
containing the same number of arguments as there are parameters in the
parameter-list, and each argument must be capable of being passed
either by-reference or by-value to its corresponding parameter. See
Section 4 for a discussion of argument passing.

If a RETURNS option is not specified, the procedure must always be
called by a CALL statement, and it must not contain any RETURN
statements that specify a return value.

- 2 7 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

If a RETURNS option is specified, t must be a set of data type
attributes that specify a scalar value. All values returned by the
procedure are converted to this data type prior to being returned as
the function value of the procedure. All RETURN statements must
specify a return value and the procedure must not execute its own END
statement. All calls to the procedure must result from the evaluation
of a function reference.

If the procedure is called recursively, the RECURSIVE option must be
spec i fied .

If OPTIONS (MAIN) is specified, a return from this procedure
effectively acts as a STOP statement, closing all PL1G files and
terminating program execution.

Procedures may contain other procedures and BEGIN blocks as well as any
other statements. Examples:

P: PROCEDURE(A, B) RETURNS(FIXED BINARY(15));
DECLARE(A,B) FLOAT;

END P;
Q: PROCEDURE(X) RECURSIVE;

DECLARE X CHARACTER(*);

CALL Q('HELLO');

END Q;

R E V . 0 9 - 2 8

I D R 4 0 3 1 S T A T E M E N T S

PUT Statement

PUT [FILE(f)] [SKIP[(n)l] [LINE(m)] [PAGE] [list];

list is:

LIST(output-list)
or

EDIT(output-list) (format-list)

and output-list is:

output-item [,output-item]...

and output-item is:

expression
or

(output-list iterative do)

If specified, n and m must be expressions that produce fixed-point
integer values, and i must be a reference that produces a file value.
The discussion of the FORMAT statement in this section gives the
definition of a format-list.

The options may be given in any order, but the format-list is part of
the EDIT option and must always immediately follow the output-list.

If SKIP is given without n, a value of one is supplied by default.

If the FILE option is omitted, FILE(SYSPRINT) is supplied by default.
When SYSPRINT is opened, it acquires the PRINT attribute by default.

Note

No comma separates an iterative-do from its output-list.

An output list containing one iterative-do has two sets of
parentheses. Example:

PUT FILE(F) LIST((A(K) ,B(K) DO K = 1 TO 10));

The FILE option must reference a file value whose associated file
control block has either been opened as a STREAM OUTPUT file or is
closed. If closed, it is opened by the PUT statement and given the
STREAM and OUTPUT attributes, as well as the PRINT attribute if the
file-id is SYSPRINT.

The expression in the SKIP option must produce a positive fixed-point
integer value n. The option writes n lines beginning with the current
line so that any subsequent output begins on a new line.

- 2 9 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

Either SKIP or LINE, but not both, may be specified. The LINE option
is evaluated as if it were a LINE format as described in the discussion
of the FORMAT statement in this section and positions the stream file
to a specific line relative to the top of a page. Subsequent output
begins on that line.

The PAGE option puts a new page so that subsequent output begins on
line one of that page. If PAGE and LINE are given, PAGE is evaluated
fi r s t .

SKIP, PAGE, and LINE are always evaluated prior to writing any output
produced by the statement.

If the output from a statement does not share its last line with
subsequent output, two statements must be used. Example:

PUT FILE(F) LIST(A,B,C); PUT FILE(F) SKIP;

If a PUT statement is used to produce all subsequent lines, a SKIP can
be used in the same statement, but it produces an empty line at the
beginning of the output stream. Example:

DO K = 1 TO 1000;

PUT FILE(F) SKIP LIST(A,B,C);

END;

After any SKIP option has been evaluated, the output-list is evaluated
together with any format-list.

The output-list is evaluated from left-to-right. Each expression may
be either an array reference, structure reference, or scalar-valued
expression.

A scalar value causes one value to be transmitted to the output stream
and, if EDIT is specified, uses one data format. An array variable
causes n values to be transmitted where n is the number of elements in
the array. If EDIT is specified, it uses n data formats. Values are
transmitted from the array in row-major order as defined in Section 3.
A structure variable causes all members of the structure and members of
all contained substructures to transmit a value. The values are
transmitted in left-to-right order. If EDIT is specified, each value
requires a data-format.

Only arithmetic, pictured, or string values can be transmitted by a PUT
statement.

R E V . 0 9 - 3 0

I D R 4 0 3 1 S T A T E M E N T S

A parenthesized output-list containing an iterative-do transmits values
under control of the iterative-do, as if it were a do-group. Examples:

DECLARE A(10) FLOAT;
DECLARE (B,C) FLOAT;

PUT FILE(F) LIST(A,B,C);
PUT FILE(F) EDIT(A(K),C) (E(14,6));
PUT FILE(F) LIST(B,(A(K) DO K = 1 TO 5), C) ;

The first PUT statement transmits 10 values from the array A and then
transmits values from B and C in that order.

The second PUT statement transmits a value from A(K), and then
transmits a value from C. Both values are transmitted using the same E
format.

The last example transmits a value from B, transmit values from A(l),
A(2) , A(3) , A(4) , A(5) , and from C in that order.

The number of lines written by a PUT statement is determined by the
number of values specified by the OUTPUT LIST as well as by the SKIP,
LINE, and PAGE options, and any control formats given in the
format-list. However, unless control items or options force new lines
to be written, transmission begins with the current position of the
current line and uses as many lines as are necessary to satisfy the
o u t p u t - l i s t .

List-directed Output

A LIST option specifies list-directed output. It causes each value
specified by the output-list to be written to the stream file without
the use of a format-item.

Each value to be output is converted to a character-string value using
the normal rules for conversion to character-string given in Section 8.

If the original output value is a bit-string, the resulting
character-string is enclosed in quotes and a B is appended to its right
end.

If the original output value is a character-string or pictured and the
file control block does not have the PRINT attribute, each contained
quote is replaced by two quotes and the entire string is enclosed by
quotes.

The possibly modified character-string is placed into the output stream
followed by a single blank. If the file control block has the PRINT
attribute, the value is followed by sufficient blanks to ensure that
the next output begins in the next tab stop. At least one blank always
separates fields.

- 3 1 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

If a character-string does not fit on a line, a new line is begun and
the string is written on that line and subsequent lines if necessary.
Examples:

PUT FILE(F) LIST(52,1.07E+5);
PUT FILE(F) LIST('ABCX');

The previous examples would produce the following output:

###52##1.07E+05#
•ABCX'#

The value 52 converts to ltfc#52 and is output followed by a single
blank, 1.07E+5 converts to #1.07E+05 and is followed by a single blank,
'ABCX' converts to ABCX and has quotes attached to each end. The
resulting value does not'fit on a line of size 20 so it is written on
the next line followed by a blank. If the file control block had the
PRINT attribute, the last value would be output without quotes and each
value would be followed by sufficient blanks to ensure that the next
value would begin at the next tab stop.

Edit-directed Output

An EDIT option specifies edit-directed output. It uses a format-list
to control the position of the output stream and the conversion of the
values specified by the output-list. Each output value is converted
under control of a data format and the resulting characters are written
to the output stream.

See Section 8 for a description of each data format conversion and see
the discussion of the FORMAT statement in this section for a
description of format-list evaluation. Examples:

PUT FILE(F) EDIT(A,B,C) (E(14,3),SKIP,F(10));
PUT FILE(F) EDIT(D) (A);

A is converted under control of E(14,3) and 14 characters are written
to the output stream, a new line is begun by SKIP, B is converted under
control of F(10) and 10 characters are written to the output stream, C
is then converted under control of E(14,3) and written to the output
stream. The SKIP is not evaluated a second time because no more values
remain to be output from the output-list. The second statement
converts D to a character-string whose length is determined by the
normal rules for conversion to character-string. The resulting value
is written to the same line as C, unless C happened to just fill a
line. In that case, D begins on the next line.

R E V . 0 9 - 3 2

I D R 4 0 3 1 S T A T E M E N T S

READ Statement

READ FILE (f) INTO(v) [KEY(k)] [KEYTO (r)];

The FILE, INTO, KEYTO, and KEY options may be written in any order.

KEYTO must not be specified if KEY is specified.

Execution of a READ statement reads a record from a record file by
copying the record into the storage of the variable referenced by the
INTO option. If the file control block has been opened with KEYED
SEQUENTIAL, the KEY option may be specified. If the file control block
has been opened with DIRECT, the KEY option must be specified.

If specified, the KEY option must be an expression whose value can be
converted to a character-string of implementation defined length. Its
value must be the key-value of a record in the keyed file identified by
the file control block associated with f_.

An attempt to read using a key value that does not identify a record in
_f results in a signal of the KEY condition.

The FILE option must contain a reference f that produces a file value.
The file control block associated with f_ must either have been
previously opened with RECORD INPUT or must be closed. If closed, it
is opened by the READ statement and given INPUT RECORD SEQUENTIAL.

If specified, the KEYTO option must reference a varying character
string variable whose maximum length is implementation-defined. The
file must be a keyed file. The key value of the record is assigned to
£.
If a KEY option is given, the file control block must have been
previously opened with the KEYED attribute. The presence of the KEY
option does not cause implicit opening to produce the KEYED attribute.

Regardless of how the file control block is opened, it must have either
INPUT or UPDATE as well as RECORD.

If a KEY option is given, the file is positioned to read the record
identified by the key value; otherwise, it is positioned to read the
current record of a SEQUENTIAL file. After reading the record, the
current position is advanced to the next record if the file is
SEQUENTIAL.

- 3 3 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

The record is a copy of storage and must have been produced by a WRITE
or REWRITE statement whose FROM option identified a variable whose
size, shape, and component data types were identical to those of the
variable identified by the INTO option. Variables used in INTO and
FROM options must not be unaligned bit-strings or structures consisting
entirely of unaligned bit-strings. Violation of these rules produces
unpredictable results and may or may not cause the ERROR condition to
be signalled. Examples:

READ FILE(F) INTO(X);
READ FILE (G) INTO(Y) KEY(N+1);

RETURN Statement

RETURN [(result)] ;

result must be an expression whose values can be converted to the data
type specified in the RETURNS option of the containing procedure.

Execution of a RETURN statement terminates the current block activation
and returns control to the calling block.

If a result is specified, the containing procedure must have a RETURNS
option and must have been called by a function reference. In this
case, the result expression is evaluated, converted to the data type
specified by the RETURNS options of the PROCEDURE statement, and
returned as the function value.

If a result is not specified, the containing procedure must not have a
RETURNS option and be called only by a CALL statement.

A RETURN statement executed in a BEGIN block returns from the
activation of the containing procedure block and terminates any BEGIN
blocks that contain the RETURN statement.

A BEGIN block that is an on-unit must not contain a RETURN statement.
Some examples of the RETURN statement are:

RETURN;
RETURN (A+B) ;
RETURN('STRING RESULT');
RETURN ('l'B);

REVERT Statement

REVERT condition-name;

condition-name may be ERROR, ENDFILE(f) , ENDPAGE(f), or KEY(f).

R E V . 0 9 - 3 4

I D R 4 0 3 1 S T A T E M E N T S

Execution of a REVERT statement reverts the on-unit established within
the current block activation by a previously executed CN statement. If
no on-unit for the condition is established in the current block
activation, the REVERT statement has no effect.

The reference f given in an I/O condition name must produce a file
value. The I/O condition is qualified by the file control block I/O
associated with f. This means that REVERT ENDPAGE(F); and REVERT
ENDPAGE(G); revert different on-units if F and G designate different
file control blocks; otherwise, they revert the same on-unit .
Examples:

REVERT ERROR;
REVERT ENDPAGE(F);

REWRITE Statement

REWRITE FILE(f) FROM(v) [KEY(k)];

The FILE, FROM, and KEY options may be given in any order.

Execution of a REWRITE statement replaces a record in a KEYED UPDATE
fi l e .

Because the set of file attributes that would be supplied as a result
of an implicit file opening caused by a REWRITE statement does not
include KEYED, the FILE option must reference a file value whose
associated file control block has been opened with the KEYED and UPDATE
a t t r i bu tes .

The KEY option, if specified, must contain an expression whose value
can be converted to character-strings of an implementation-defined
length. If the KEY option is omitted, the file must have been opened
with the KEYED and SEQUENTIAL attributes. In this case, the current
record of the file will be replaced.

The FROM option must contain a variable reference. The storage of that
variable is copied as the new record. The FROM option must not contain
a variable that is an unaligned bit-string or a structure that consists
entirely of unaligned bit-strings. Examples:

REWRITE FILE(F) FROM(X) KEY(N+1);
REWRITE FILE(F) FROM(Y(K)) KEY('ABC');

SIGNAL Statement

SIGNAL condition-name;

condition-name may be: ERROR, ENDFILE(f), ENDPAGE(f), or KEY(f).

Execution of a SIGNAL statement signals the specified condition. It is
normally used during program debugging to test on-units.

9 - 3 5 A p r i l 1 9 8 0

S E C T I O N 9 I D R 4 0 3 1

A signal from a SIGNAL statement or from the PL/I implementation calls
the most recently established on-unit for the specified condition.

See Section 2 for a discussion of exception handling. Examples:

SIGNAL ERROR;
SIGNAL ENDFILE(F);

STOP Statement

STOP;

Execution of a STOP statement closes all open files and terminates
program execution.

WRITE Statement

WRITE FILE(f) FROM(v) [KEYFRCM(k)] ;

The FILE, FROM, and KEYFROM options may be written in any order.

Execution of a WRITE statement writes a record into the file identified
by the FILE option by copying the storage of the variable referenced by
the FROM option. The variable must not be an unaligned bit-string or a
structure consisting entirely of unaligned bit-strings.

If the file control block associated with _f has been opened with the
KEYED and SEQUENTIAL attributes, the KEYFROM option may be specified.
If it has been opened with the DIRECT attribute, the KEYFROM option
must be specified.

If specified, the KEYFROM option must contain an expression whose value
can be converted to a character-string of implementation-defined length
that serves as the key-value of the new record. If a record with this
key-value already exists, the KEY condition is signalled.

The FILE option must contain a reference f. that produces a file value.
The file control block associated with _f must have been either
previously opened with RECORD OUTPUT, or it must be closed. If closed,
it is opened by the WRITE statement and given OUTPUT RECORD SEQUENTIAL.

If a KEYFROM option is given, the file control block must have been
previously opened with the KEYED attribute. The presence of a KEYFROM
option does not supply the KEYED attribute in an implicit file opening.
Examples:

WRITE FILE(F) FROM(X);
WRITE FILE(G) FROM(Y) KEYFROM(N+l);

R E V . 0 9 - 3 6

IDR4031 BUILT-IN FUNCTIONS

SECTION 10

BUILT-IN FUNCTIONS

SUMMARY

The built-in functions may be grouped into the following classes:

• Arithmetic Built-in Functions:

ABS CEIL DIVIDE EXP FLOOR
LOG L0G2 LOG10 MAX MIN
MOD ROUND SIGN SQRT TRUNC

Trigonometric Built-in Functions:

ACOS ASIN ATAN ATAND ATANH
COS COSD COSH SIN SIND
SINH TAN TAND TANH

St r i ng Built-in Functions:

BOOL COLLATE COPY INDEXBOOL COLLATE COPY INDEX LENGTH
STRING SUBSTR TRANSLATE VALID
VERIFY

Conversion Built-in Functions:

BINARY BIT BYTE
FIXED FLOAT RANK

CHARACTER DECIMAL

Condition Built-in Functions:

ONCODE ONFILE ONKEY ONLOC

Miscellaneous Built-in Functions:

ADDR DATE DIMENSION HBOUND LBOUND
LINENO NULL PAGENO UNSPEC TIME

FUNCTION DESCRIPTIONS

▶ ABS(X)

The result is the absolute value of X and has the same data type as X.
X must be an arithmetic value.

10 April 1980

S E C T I O N 1 0 I D R 4 0 3 1

^ ACOS(X)

The result is the arccosine of X and has the same data type as X.
must be a floating-point value. The result is expressed in radians.

^ ADDR(X)
The result is a pointer to the storage referenced by X. X must not be
a reference to a parameter whose corresponding argument was passed
by-value. X must not be a parameter whose corresponding argument is an
array that is a member of a dimensioned structure because the storage
of such an array is fragmented and cannot be accessed by a pointer and
a based variable. On many implementations, X must not be an unaligned
bit-string or a structure consisting entirely of unaligned bit-strings.

^ ASIN(X)

The result is the arcsine of X and has the same data type as X. X must
be a floating-point value. The result is expressed in radians.

^ ATAN(X)

The result is the arctangent of X and has the same data type as X. X
must be a floating-point value. The result is expressed in radians.

^ ATAN(X,Y)

The result is the angle in radians whose tangent is XA. Both X and Y
must be floating-point values. The result is the common type and
maximum precision of X and Y.

▶ ATAND(X)

The result is the arctangent of X and has the same data type as X. X
must be a floating-point value. The result is expressed in degrees.

▶ ATAND(X,Y)

The result is the angle in degrees whose tangent is X/Y. Both X and Y
must be floating-point values. The result is the common type and
maximum precision of X and Y.

R E V . 0 1 0

I D R 4 0 3 1 B U I L T - I N F U N C T I O N S

^ ATANH(X)

The result is the hyperbolic arctangent of X and has the same data type
as X. X must be a floating-point value.

▶ BINARY(X) or BINARY(X,P)

X may be an arithmetic or string value. If X is a fixed-point decimal
with a non-zero scale factor then P must be given. P is an integer
constant indicating the precision of the result.

If X is floating-point, the result is a float binary value; otherwise,
the result is a fixed-point binary value. If P is omitted, the result
has a precision that is determined by the rules for type conversion
given in Section 8.

▶ BIT(S) or BIT(S,L)
S may be an arithmetic or string value. L must be a positive
fixed-point integer. If L is given, S is converted to a bit-string of
length L. Otherwise, S is converted to a bit-string whose length is
determined by the rules for type conversion given Section 8.

▶ BOOL(X,Y,Z)

X and Y must be bit-string values. Z must be a bit-string constant,
four bits long.

The result is a bit-string whose length is the maximum of the lengths
of X and Y.

If X and Y are null strings, the result is a null string. If X is not
the same length as Y, the shorter string is extended on the right with
zero bits until X and Y are the same length. The bits values within Z
are ml, m2, m3, m4 from left to right respectively.

The i-th bit value of the result is set to one of the values ml, m2,
m3, m4 depending on the i-th bit value of X and Y according to the
following table:

X (i) Y (i) RESULT(i)

0
0
1
1

0
1
0
1

ml
m%
m3
m4

1 0 - 3 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

For example, the result of BOOL('1100110','0101',0110') is '1001110'.

▶ BYTE(X)

A PL1G extension. The result is a single character selected by
SUBSTR(COLLATE(),X+1,1). X must be a fixed-point binary integer value.
Note that the resulting character is formed by taking the rightmost
bits of X as a byte. On computers that use the ASCII character set
with the high order bit of each byte set to '1', the definition of this
function is SUBSTR(COLLATE(),X-127,1) .

▶ CEIL(X)

The result is the smallest integer greater than or equal to X and has
the same data type as X.

If X is a floating-point value, the precision of the result is the
precision of X; otherwise, the precision of the result is
(MIN(N,MAX(p-q+l,l)) ,0) . N is the maximum precision allowed for
fixed-point values of the result type. Examples:

The result of CEIL(-3.1) is -3.

The result of CEIL(3.1) is 4.

The result of CEIL(0) is 0.

▶ CHARACTER(S) or CHARACTER(S,L)

S may be an arithmetic or string value, and L must be a positive
fixed-point integer value.

If L is given, S is converted to a character-string of length L;
otherwise, S is converted to a character-string whose length is
determined by the rules for type conversion given in Section 8.

^ COLLATE() or COLLATE

The result is a character-string of implementation-defined length that
consists of the set of characters in the computer's character set in
ascending order.

R E V . 0 1 0

I D R 4 0 3 1 B U I L T - I N F U N C T I O N S

^ COPY(X,Y)

X must be a string value and Y must be a positive fixed-point integer
value. The result is obtained by concatenating Y occurrences of X.

▶ COS(X)

The result is the cosine of the angle X expressed in radians and has
the same data type as X. X must be a floating-point value.

^ COSD(X)
The result is a value that is the cosine of the angle X expressed in
degrees, and has the same data type as X. X must be a floating-point
value.

▶ COSH(X)

The result is a value that is the the hyperbolic cosine of the angle X
expressed in radians, and has the same data type as X. X must be a
floating-point value.

^ DATE() or DATE

The result is a character-string that represents the system date of the
form YYMMDD where YY, MM, and DD are in the ranges 00:99, 01:12, and
01:31 and represent the year, month, and day respectively.

^ DECIMAL(X) or DECIMAL(X,P) or DECIMAL(X,P,Q)
X may be an arithmetic or string value. P is an integer constant
indicating the precision of the result. If P alone is given, Q is
assumed to be zero. Q must be an integer constant indicating the scale
of the result.

If X is floating-point, the result is a float decimal value;
otherwise, the result is a fixed decimal value. In the former case, Q
must be omitted. If Q is omitted and the result is fixed-point, the
result is an integer of precision P. If P is omitted, the result has a
precision determined by the rules for type conversion given in Section
8.

1 0 - 5 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

^ DIMENSION(X,N)

X must be an array variable. N must be an integer constant indicating
the N-th dimension of X.

The result is a fixed binary integer giving the number of elements in
the N-th dimension of X.

The precision of the result is implementation-defined. X must have at
least N dimensions, and N must be greater than zero. Example:

DECLARE R FIXED BINARY;
DECLARE A(3:5,2,10:10,4:7);

R = D I M (A , 1) ; / * R = 3 V

^ DIVIDE(X,Y,P) or DIVIDE(X,Y,P,Q)

X is an arithmetic value, Y is an arithmetic value, P is an integer
constant indicating the precision of the result, Q is an integer
constant indicating the scale of the result.

The result is X/Y and has the common data type of X and Y.

The precision of the result is (P,Q) or (P) .

If Y = 0, the program is in error and the results of continued
execution are undefined.

^ EXP(X)

The result is the value of the base of the natural logarithm e raised
to the power of X: e**X, and has the same data type as X. X must be a
floating-point value.

^ FIXED(X,P) or FIXED(X,P,Q)
X may be an arithmetic or string value, P is an integer constant
indicating the precision of the result. Q must be an integer constant
indicating the scale of the result.

The result is X converted to a fixed-point arithmetic value according
to rules for type conversion given in Section 8.

R E V . 0 1 0

I D R 4 0 3 1 B U I LT - I N F U N C T I O N S

^ FLOAT(X,P)

X may be an arithmetic or string value, P is an integer constant
indicating the precision of the result.

The result is X converted to a floating-point arithmetic value
according to the rules for type conversion given in Section 8.

^ FLOOR(X)

The result is the largest integer that is less than or equal to X.

If X is a floating-point value, the precision of the result is the
precision of X; otherwise, the precision of the result is
(MIN(N,MAX(p-qfl,l)) ,0) . Examples:

The result of FLOOR(3.125) is 3.

The result of FLOOR(-3.125) is -4.

The result of FLOOR(0) is 0.

▶ HBOUND(X,N)

X must be an array variable, N must be an integer constant indicating
the N-th dimension of X.

The result is a fixed binary integer giving the upper bound of the N-th
dimension of X.

The precision of the result is implementation-defined.

X must have at least N dimensions, and N must be greater than zero.
Example:

1 0 - 7 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

DECLARE R FIXED BINARY;
DECLARE A(3:5,2,-10:10,4:7);

R

R

= H B O U N D (A , l) ; / * R = 5 * /

= H B O U N D (A , 2) ; / * R = 2 * /

^ INDEX(S,C)

S and C must be character-1-strings, or S and C must be bit-strings.

The function searches a string S for a specified substring C and
returns a fixed binary integer value indicating the position of C
within S.

The result precision is implementation-defined.

If either S or C is a null string, the result is zero. If the
substring C is not contained within S, the result is zero; otherwise,
the result is an integer indicating the position within S of the
leftmost character or bit of the substring C.

For example, the result of INDEX(*abcdefg','def') is 4.

▶ LBOUND(X,N)

X must be an array variable, N must be an integer constant indicating
the N-th dimension of X.

The result is a fixed binary integer value giving the lower bound of
the N-th dimension of X.

The precision of the result is implementation-defined.

X must have at least N dimensions, and N must be greater than zero.
Example:

R E V . 0 1 0

I D R 4 0 3 1 B U I L T - I N F U N C T I O N S

DECLARE R FIXED BINARY;
DECLARE A(3:5,2,-10:10,4:7);

R

R

= LBOUND(A, l) ; / *R = 3* /

= LBOUND(A,2); /*R = 1*/

▶ LENGTH(S)

S is either a character- or bit-string.

The result is a fixed binary integer giving the number of characters or
bits in the string S.

The precision of the result is implementation-defined. The null string
has length zero.

^ LINENO(X)

The result is a fixed binary integer giving the line number of the file
control block identified by X. X must be a file value.

The precision of the result is implementation-defined.

X must identify an open file control block with the PRINT attribute.

^ LOG(X)

The result is the natural logarithm of X, and has the same data type as
X. X must be a floating-point value greater than zero.

^ LOG10(X)

The result is the logarithm of X to the base 10, and has the same data
type as X. X must be a floating-point value greater than zero.

1 0 - 9 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

^ LOG2(X)

The result is the logarithm of X to the base 2, and has the same data
type as X. X must be a floating-point value greater than zero.

^ MAX(X,Y)

X and Y must be arithmetic values.

The values of X and Y are converted to a common arithmetic type using
the conversion rules for arithmetic infix operators. The result is the
larger of these converted values and has the common arithmetic type.

^ MIN(X,Y)

X and Y must be arithmetic values. The values of X and Y are converted
to a common arithmetic type using the conversion rules for arithmetic
infix operators. The result is the smaller of these converted values
and has the common arithmetic type.

^ MOD(X,Y)

X and Y must be arithmetic values.

The result is the truncated remainder of X divided by Y. The result
has the common type of X and Y.

Let (px,qx) and (py,qy) represent the precision of X and Y
respectively. If the common type of X and Y is fixed-point, the
precision of the result is:

(MIN(N,py-qy+MAX(qx,qy)) ,MAX(qx,qy)) .

Otherwise, the precision of the result is MAX(px,py) . N is the maximum
precision allowed for the common type of X and Y.

If Y = 0, the result is X; otherwise, the result is X-Y*FLOOR(X/Y).

For example, the result of MOD(15,2) is 1.

^ NULL() or NULL

The result is a null pointer value.

R E V . 0 1 0 - 1 0

I D R 4 0 3 1 B U I L T - I N F U N C T I O N S

^ ONCODEO or ONCODE

The value returned by this function is a fixed binary integer that
indicates the reason why the condition was signalled. (For example, an
error code.) Its value is 0 if no on-unit is currently active.

The values returned and their precision are implementation-defined.

▶ ONFILEO or ONFILE

The value returned by this function is a character string containing
the filename for which the most recent ENDFILE, KEY, or ENDPAGE
condition was signalled. Its value is a null string if no on-unit for
one of those three conditions is currently active.

▶ ONKEY() or ONKEY

The value returned by this function is a character string containing
the KEY value for which the most recent KEY condition was signalled.
Its value is a null string if no on-unit for the KEY condition is
currently active.

^ ONLOCQ or ONLOC

The value returned by this function is a character string containing
the name of the procedure which was executing when the most recent
condition was signalled. Its value is a null string if no on-unit is
currently active.

^ PAGENO(X)

The result is a fixed binary integer giving the current page number in
the file control block identified by X.

The precision of the result is implementation-defined.

If X does not identify an open file control block with the PRINT
attribute, the program is in error.

^ RANK(X)

A PL1G extension. X must be a character-string of length one.

The result is a fixed binary integer giving the position of the
character within the collating sequence. The result is defined as
RANK(X) = INDEX(C0LLATE,X)-1, and has an implementation-defined
precision. The resulting value is formed by taking the bits of X as an
unsigned binary integer value. On computers that use the ASCII
character set with the high order bit of each byte set to '1', the
definition of this function is INDEX (COLLATE () ,X)+127.

1 0 - 1 1 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

▶ ROUND(X,K)

X is the arithmetic value to be rounded, K is a signed integer constant
indicating the position within X to be rounded.

The result is the value of X rounded such that the K-th position of X
is expressed to its nearest integer.

For example, the result 3.215 is returned for R0UND(3.2146,3) .

▶ SIGN(X)

The result is a fixed binary integer -1, 0, 1 indicating the sign of X.
The precision of the result is implementation-defined.

^ SIN(X)

The result is the sine of the angle X expressed in radians, and has the
same data type as X. X must be a floating-point value.

▶ SIND(X)

The result is the sine of of the angle X expressed in degrees, and has
the same data type as X. X must be a floating-point value.

^ SINH(X)

The result is the hyperbolic sine of the angle X expressed in radians,
and has the same data type as X. X must be a floating-point value.

▶ SQRT(X)

The result is the positive square root of X, and has the same data type
as X. X must be a positive nonzero floating-point value.

^ STRING(S)

S is an arithmetic or string value or an array or structure containing
all string values and suitable for storage sharing as defined in
Section 4. S must be a reference to a variable whose storage is
connected.

The result is S converted to a string according to the rules for type
conversion given in Section 8.

R E V . 0 1 0 - 1 2

I D R 4 0 3 1 B U I LT - I N F U N C T I O N S

▶ SUBSTR(S,I,J) or SUBSTR(S,I)

S is either a bit or character-string, I must be a fixed-point integer
value indicating the first bit or character of a substring within X, J
must be a fixed-point integer value indicating the length of the
substring. If J is not given, then J = LENGTH(S)-I+l.

The result is a string that is a copy of a part of the string s
starting at the I-th character for a length J.

The program is in error if KI or (I+J-l)> LENGTH(S) or J<0. If the
program is compiled with subscript checking enabled, these errors
result in the ERROR condition; otherwise, these errors produce
unpredictable results.

▶ TAN(X)

The result is the tangent of the angle X expressed in radians, and has
the same data type as X. X must be a floating-point value.

▶ TAND(X)

The result is the tangent of the angle X expressed in degrees, and has
the same data type as X. X must be a floating-point value.

▶ TANH(X)

The result is the hyperbolic tangent of the angle X expressed in
radians, and has the same data type as X. X must be a floating-point
value.

^ TIME() or TIME

The result is a character string of an implementation-defined length of
at least six characters of the form HHMMSS[FFF...] that represents the
time of day, where HH, MM, and SS are in the ranges 00:23, 00:59, and
00:59, and represent hours, minutes, and seconds respectively. If an
implementation returns a string of length greater than six, FFF
represents decimal fractions of a second.

▶ TRANSLATE(S,T) or TRANSLATE(S,T,X)

S is a character-string, T is a character-string, and X is also a
character-string. If T is shorter than X, T is padded on the right
with blanks until the length of T is equal to the length of X.

1 0 - 1 3 A p r i l 1 9 8 0

S E C T I O N 1 0 I D R 4 0 3 1

If X is not given, it is assumed to be COLLATE().

The occurrence of an element of X in the string S is replaced by the
corresponding element in the string T.

If S is the null string, the result is the null string. If S is not
the null string, then for each character of S, S(k), the value i is
calculated to be equal to INDEX(X,S(k)) . If the value of i is 0, the
corresponding character of the result is S(k); otherwise, the
corresponding character of the result is T(i).

For example, the result of TRANSLATE('1#2#','0','#') is '1020'.

^ TRUNC(X)

The result is the integer part of X.

If X is a floating point value, the precision of the result is the
precision of X; otherwise, the precision of the result is
(MIN(N,MAX(p-q+l,l)) ,0) . N is the maximum precision allowed for
fixed-point values of the result type.

For X<0, the result is CEIL(X) . For X>=0, the result is FLOOR (X) .
Examples:

The result of TRUNC(3.125) is 3.

The result of TRUNC(-3.125) is -3.

▶ UNSPEC(X)

X must be a reference to a scalar variable.

The result is a bit-string containing the internal representation of X.
The result value's length and content depend on the type and value of X
and are implementation-defined.

▶ VALID(X)

X must be a reference to a scalar pictured value.

The result is a bit-string of length one that indicates if the
character-string value of X can be edited into the picture declared for
X.

The result value is '1' B if the character-string value of X can be
edited into the picture declared for X; otherwise, the result is '0'B.

R E V . 0 1 0 - 1 4

I D R 4 0 3 1 B U I L T - I N F U N C T I O N S

^ VERIFY(S,C)

S and C must be character-string values.

The result is 0 if each of the characters in S occurs in C. Otherwise,
VERIFY returns an integer that indicates the leftmost character in S
which is not found in C.

For example, verify('2a56b','0123456789') returns the value 2 to
indicate the first non-numeric character in the string '2a56b'.

1 0 - 1 5 A p r i l 1 9 8 0

Part III
PL1G and the Prime System

I D R 4 0 3 1 I M P L E M E N T A T I O N

SECTION 11

IMPLEMENTATION DEFINED FEATURES

This section defines those PL/I Subset G properties that are dependent
on a particular implementation. Programs whose correct execution
depends on these properties may require modification in order to
execute correctly on another implementation.

ARITHMETIC PRECISION

Each arithmetic data type has a default precision and a maximum
precision as specified by the following table.

Data Type Max imum Prec is ion Defau l t P rec is ion

F i x e d B i n a r y 3 1 1 5
F i x e d D e c i m a l 1 4 5
F l o a t B i n a r y 4 7 2 3
F l o a t ' D e c i m a l 1 4 6

The range of the scale factor of fixed-point decimal data is 0<=q<=14.

MAXIMUM SIZES

• The maximum length of a string value is 32767 bits or
characters. However, any string expression that produces an
intermediate result requires storage that is allocated either
on the stack or in the system storage area used to support the
ALLOCATE statement. Allocation of large temporary storage
blocks exceeding the amount of available storage results in a
signal of the ERROR condition.

• The maximum size of a string constant is 256 bits or
characters. This limit is checked by the compiler after
expansion of bit string constants that are written in B2, B3,
or B4 format.

• The maximum size of an internal array is 64K words. However,
external static arrays may be up to 2**31 words long, subject
to available memory constraints.

• The default value of the LINESIZE option of an OPEN statement
is 120.

• The default value of the PAGESIZE option of an OPEN statement
is 60.

• The COLLATE built-in function returns a string consisting of
the 128 characters in the ASCII character set.

1 1 - 1 A p r i l 1 9 8 0

SECTION 11 IDR4031

The maximum length of a name is 32 characters. However,
external names longer than eight characters are truncated to
that length and a warning message is printed at compile time.

The maximum length of a string value transmitted by a
PUT statement is 256 bits or characters.

GET or

DATA SIZE AND ALIGNMENT

The size and alignment of each PL1G data type is given by the following
tab le:

Data Type Alignment Size (p = precision)

Fixed Binary(p) word 1 word p <= 15
Fixed Binary(p) word 2 words p > 15
Fixed Decimal(p) byte (p+2)/2 bytes
Float Binary(p) word 2 words p <= 23
Float Binary(p) word 4 words p > 23
Float Decimal(p) word 2 words p <= 6
Float Decimal(p) word 4 words p > 6
Character(n) byte n bytes
Character(n) Varying word (n+3)/2 words
B i t (n) b i t n bits
Bit(n) Aligned word (n+15)/16 words
Pointer word 3 words
Pointer Options word 2 words

(short)
Picture byte n bytes
Label word 4 words
Entry word 4 words
File Constant word 55 words
File Variable word 2 words
Structure max of members sum of members

Data not contained in a structure or array is allocated on a word or
double word boundary.

The ALIGNED attribute applied to character data has no effect on the
alignment of the data.

INPUT/OUTPUT ON TTY

The device named TTY is unlike any other stream file in the following
respects:

• Each PUT statement transmits data to the device without waiting
for the line to be filled.

• A GET statement resets the current column position used by
subsequent PUT statements.

REV. 0 11

I D R 4 0 3 1 I M P L E M E N T A T I O N

READ AND WRITE ON STREAM FILES

READ and WRITE statements can operate on stream files if they specify a
scalar varying character string variable in their INTO and FROM
options. A READ statement reads the next complete input line and
assigns it to the varying character string specified by the INTO
option. The string does not include any new-line character. A WRITE
statement puts any partial line currently in the output buffer of the
file and then writes a line consisting of the current value of the
varying string specified by the FROM option.

The use of READ and WRITE statements on stream files is an easy and
efficient method of processing variable length lines. However, this
feature is not part of standard PL/I and makes your program dependent
on those implementations that support this feature.

VARIABLE LENGTH INPUT LINES

A stream input file consists of a sequence of lines each of which may
have a unique length. Lines read from a disk file are not modified in
any way. Lines read from all other devices have trailing blanks
removed and have one blank appended to the end of each line that is
read by a GET statement. This blank ensures that a field typed at the
end of a line is not appended to a field typed at the beginning of the
next line.

A stream file containing variable length input lines cannot be
processed by standard PL/I. Two nonstandard methods can be used to
read these files. A READ statement can be used to read lines as
described by the previous paragraphs. An edit-directed GET statement
can also be used. In order to read a variable length line with a GET
statement, an A-format without a field width must be used. The
A-format used in this way reads the content of the current line
beginning with the current column and ending with the end of the line
as its input field. It then sets the column position so that the next
operation will read a new line.

THE TITLE OPTION AND FILE OPENING

If a file opening is performed without a TITLE option, the file
description, fd, is obtained by taking the file-id from the file
control block. The file-id of a file control block is the name of the
file constant associated with that file control block.

If a file opening is performed with a TITLE option, the file
description, fd, is the character string value given by the TITLE
option.

Regardless of how the fd is obtained, it must have one of the following
general forms:

1 1 - 3 A p r i l 1 9 8 0

S E C T I O N 1 1 I D R 4 0 3 1

name
name -SAM [n]
name -DAM [n]
name -APPEND [n]
name -DEVICE [n]

where n is an integer that gives the maximum record size in words. One
or more blanks must separate the name from the rest of the file
description. Blanks must also separate the record size from the file
or device type. The record size is ignored for stream files and need
not be given. If omitted for a record file, a default of 1024 words is
suppl ied.

-SAM n specifies that name is the name of a disk file that contains
variable length records written without keys. The maximum length of
any record in the file is n words.

-DAM n specifies that name is the name of a disk file that contains
variable length records written with integer keys. The maximum length
of any record in the file is n words. Each record is stored in n words
to allow for quick access of the record using its key. These files
cannot be read as sequential files, they must be opened using the
DIRECT file attribute.

-APPEND n has the same meaning as -SAM, except that it causes the
output produced by this opening to be appended to the end of any
existing SAM file. -SAM n causes any existing output file to be
deleted and a new file created.

-DEVICE n specifies that name is the name of a device whose maximum
record size is n words. Only nonkeyed files can be read or written to
devices. The following table gives the possible device names and the
type of file that can be read or written to the device.

Dev i ce Name F i l e Type Inpu t /Ou tpu t

S Y S I N S t r e a m I n p u t f r o m T T Y
S Y S P R I N T S t r e a m O u t p u t t o T T Y
T T Y S t r e a m I n p u t / O u t p u t t o T T Y
P T R S t r e a m I n p u t P a p e r T a p e
P T P S t r e a m O u t p u t P a p e r T a p e
C R S t r e a m I n p u t C a r d R e a d e r
S P R S t r e a m O u t p u t S e r i a l P r i n t e r
M T 0 S t r e a m / R e c o r d I n p u t / O u t p u t M a g n e t i c Ta p e
M T l S t r e a m / R e c o r d I n p u t / O u t p u t M a g n e t i c Ta p e
M T 2 S t r e a m / R e c o r d I n p u t / O u t p u t M a g n e t i c Ta p e

M T 7 S t r e a m / R e c o r d I n p u t / O u t p u t M a g n e t i c Ta p e
P R 0 S t r e a m O u t p u t L i n e P r i n t e r 0
P R 1 S t r e a m O u t p u t L i n e P r i n t e r 1

R E V . 0 1 1

I D R 4 0 3 1 I M P L E M E N T A T I O N

If a specification of -DAM, -SAM, -DEVICE, or -APPEND is not given, the
following rules are used to make the opening:

• If the name is a device name, -DEVICE is used.

• If the opening is for a DIRECT file, -DAM is used.

• If neither of the previous cases was true, -SAM is used.

The effect of these rules is that a specification need only be given if
the maximum record size exceeds 1024 words, if a device name is to be
used as the name of a disk file, or if an output file is to be appended
to the end of an existing file.

A DIRECT is always a -DAM file and must not be opened as a -SAM,
-APPEND, or -DEVICE file.

LISTING CONTROL

The %NOLIST; statement causes the compiler to stop placing listing
information into the listing file, if any; %LIST; causes the compiler
to resume its former operation with respect to the listing. These
directives can be used with %INCLUDE files, for example, to exclude a
long repetit ive included declaration from the generated l isting.
Another possible use is to suppress uninteresting portions of an
expanded (i.e., including the generated code) listing.

POINTER SIZE CONTROL

The default size for pointers is three words, allowing unaligned
character- and bit-strings to be addressed. However, some applications
may desire a two-word pointer (which cannot address unaligned strings),
either because of the space-critical nature of the application or
because of an interface with existing software. These applications may
declare pointers as POINTER OPTIONS(SHORT). However, use of these
pointers either to address unaligned data or to receive the address of
unaligned data is a program error that is not diagnosed by the
compiler, which will cause anomalous and unpredictable program
behavior.

ADDITIONAL IMPLEMENTATION DEFINED FEATURES

• Tab stops are set every 7 columns of a stream file that has the
PRINT attribute.

• Two exponent digits are produced when a floating-point value is
converted to a character string value.

• The file-name used in a %INCLUDE must be a valid PRIMOS file
name enclosed in quotes.

1 1 - 5 A p r i l 1 9 8 0

S E C T I O N 1 1 I D R 4 0 3 1

• Keys are restricted to 32 characters. The variable used in a
KEYTO option must be a varying character string.

• All built-in functions that are described in Section 10 as
producing a fixed-point binary integer result of implementation
defined precision produce a result whose precision is 15.

• The character set of the computer is ASCII stored with the high
order bit of each byte set to one. This is the collating
sequence used for comparisons of character data. Because the
high order bit is set to one, the definition of the RANK and
BYTE built-in functions differs from that used in several other
implementations of PL/I that also support RANK and BYTE.

NULL BUILT-IN FUNCTION

The value of the NULL() built-in function is 7777(0)/0. The 7777
represents a fictitious segment whose number is higher than that of any
actual segment. The (0) is a ring number, and the final 0 is a word
number.

FILE SYSTEM LIMITATION

PRIMOS allows the user to access up to 128 files. In PL1G, the user
may access at most 16 files concurrently.

R E V . 0 1 1

I D R 4 0 3 1 A D V I C E

SECTION 12

ADVICE ON THE USE OF PL1G

PURPOSE OF THIS SECTION

This section is intended for experienced as well as new users of PL/I.
It provides advice on how to write readable and efficient PL1G
programs, and information which may be useful when programs fail for no
obvious reason.

EFFICIENCY

Input/Output

Record I/O is nearly always faster and requires less space than stream
I/O. Record I/O transmissions frequently can be performed without
copying the record into a PL1G I/O system buffer.

Record I/O using integer keys is often more efficient than using
character-string keys.

List-directed I/O requires less execution-time support code and
generally is faster than edit-directed I/O, but the difference may not
be significant.

Ar i thmet ic

Because computers use binary integers for addressing data, fixed-point
binary is the most efficient form of ari thmetic. Floating-point
arithmetic with either binary or decimal precision is also generally
supported by hardware and is efficient. Fixed-point decimal data may
be implemented in many ways, but is normally stored as packed decimal
data. Operations on decimal data nearly always require more time and
more space, frequently by a factor of 5 when compared with fixed binary
ar i thmet ic .

Variable Size Data

Constant size data can be more easily addressed and operated upon than
variable size data. Whenever possible, declare the size of strings and
the bounds of arrays as integer constants.

If a structure contains one or more members with a variable size, place
all such members at the end of the structure following all members with
fixed sizes. This improves the addressing of the fixed size members.

If possible, make the sizes of based variables constant. If they must
be variable, make them simple unsubscripted variable references rather

1 2 - 1 A p r i l 1 9 8 0

S E C T I O N 1 2 I D R 4 0 3 1

than expressions. The size of a based variable is evaluated for each
reference to the based variable.

COMMON PROGRAMMING ERRORS

The compiler is capable of producing approximately 225 unique error
messages. However, some errors are too difficult or too costly to
diagnose either during compilation or during execution of a program.
Other errors may produce misleading diagnostics. The following is a
list of the most common errors that are either not diagnosed or that
produce misleading error messages.

• Comments that do not end with */ cause the compiler to consider
all text up to the next */ as part of the comment. The compiler
prints an * next to the line number of each line that is a
continuation of a comment. Examine your listing for these
asterisks and ensure that all comments are properly closed.

• String constants that do not end with a quote cause similar
problems as unclosed comments, but * is not used to indicate
continued strings. Because line boundaries do not necessarily
consist of a carriage return or a new-line character, character
string constants should not be continued across a line boundary.
In some implementations, the carriage return, new-line, or both
are considered part of the program text, but on other systems
they are not.

• Statements that do not end with a semi-colon cause incorrect
recognition of the statement type. This normally produces a
reasonable error message.

• %REPLACE statements that replace keywords cause incorrect
recognition of the statement or option designated by that
keyword. Because the listing looks correct, these errors are
hard to understand.

• Declarations of procedures in other program modules that
disagree with the actual PROCEDURE statements in those modules.
Since the loader generally does not check for mismatches, such
errors may go undetected.

• Pointers used with based variables that are not valid
descriptions of the object designated by the pointer. These
errors cannot be detected by the compiler and are too costly to
detect during program execution. See Section 4 which describes
based variables and storage sharing.

• Null pointer values used to access based variables produce an
ERROR condition in some implementations, but are not detected in
others .

• Subscripts or arguments of SUBSTR that are out-of-range are
detected only if checking has been requested by use of a

R E V . 0 1 2

I D R 4 0 3 1 A D V I C E

compile-time option. When detected, they cause the ERROR
condition to be signalled.

• Using the value of a variable without first assigning a value to
the variable is not detected and may produce unpredictable
results some of which appear to be "correct".

• Calculating values that exceed the precision of the variable
into which they are stored is an error that may cause the ERROR
condition, but that is not detected by most implementations.

• Calling a procedure recursively without giving it the RECURSIVE
option may produce unpredictable results.

PROGRAMMING STYLE

Programs that are hard to read generally contain many more errors than
programs that are easy to read. By following a few simple rules a
programmer can ensure that his programs can be read and maintained by
others, and that he can understand his own code months or years after
it was written.

The recommendations given in this section represent the author's
programming style and is the style used by the examples in this manual.
Minor variations on this style are widely used by software specialists
who write in PL/I.

Procedures

Procedures are a natural division of the program and provide the best
mechanism to represent program modularity. The problem to be
programmed should be organized or structured as a set of modules each
of which is written as a procedure.

Procedures should be written with a minimal dependence on their ability
to access the variables of their containing procedure. All such use of
nonlocal variables should be clearly documented by comments in both the
declaring and using procedures.

Procedures used only from within a given procedure should be written as
an in terna l p rocedure w i th in the ca l l ing procedure . In terna l
procedures should be written following the executable statements of the
containing procedure.

In order to facilitate understanding of its logic, each procedure
should be as small as possible. A procedure, excluding any contained
procedures and declarations, should seldom exceed two pages of text or
approximately 150 lines. Extensive use of internal procedures is
recommended and may result in external procedures of thousands of
lines. Because all compilers have some limits on the size programs
that they can compile, it is wise to keep external procedures shorter
than 10,000 source lines.

1 2 - 3 A p r i l 1 9 8 0

S E C T I O N 1 2 I D R 4 0 3 1

Formatting Rules

The most important aspect of programming style is the way in which the
text of a program is formatted. A consistently formatted program can
be easily read by its author and other programmers who may need to work
with the program. A badly formatted program is nearly unreadable. The
rules given here are easy to follow and have been successfully used by
many programmers.

1. Place the label prefix of an executable statement on the line
immediately before the body of the statement and begin the label
in column one. This makes labels easy to find and allows
insertion of additional statements after the label.

2. Begin the body of each executable statement one tab stop from
the left margin. This makes the labels easy to find and clearly
separates the executable statements from the declarations.

3. Place all DECLARE statements at the head of their containing
procedure and begin them in column one. Use the keyword DECLARE
rather than DCL.

4. Indent the keywords THEN and ELSE and align them with each
other. Also indent the statements contained in a THEN or ELSE
clause so that any END statement that closes a clause is aligned
with the DO that heads the clause. Example:

IF A < B
THEN DC-

END;
ELSE IF P = NULL

THEN STOP;
ELSE DC-

END;

R E V . 0 1 2

I D R 4 0 3 1 A D V I C E

5. An IF statement used to select one of many cases should have its
ELSE clause aligned with the IF. Example:

IF A = 1
THEN DC-

END;
ELSE IF A = 2

THEN DO;

END;
ELSE IF A = 3

THEN DO;

END;
ELSE ...

6. Do not write more than one statement on a line.

7. Indent the body of a do-group so that its DO and END statements
are aligned with each other and so that the statements contained
within the group are indented further than the DO and END
statements. This allows the reader to easily find the matching
END statement for any DO. However, as shown in the previous
examples, a do-group that serves as a THEN or ELSE clause is
already clearly indented and requires no further indentation.

8. END statements that end a procedure should contain the procedure
name either as a comment or as a closure label. However, if
your compiler inserts additional END statements without giving
any warning, do not use the closure label.

9. Use blank lines to separate blocks of comments from blocks of
program text so that the comments can be easily identified.

10. Use redundant parentheses to establish the order of evaluation
of expressions that contain both & and I operators. They should
also be used in any expression containing operators of more than
two or three different levels of priority. Such expressions are
difficult to read because most programmers cannot remember the
exact priority of all operators.

11. Also use redundant parentheses in the following two cases:

X = (Y = Z);
R = -(P->S.M);

1 2 - 5 A p r i l 1 9 8 0

S E C T I O N 1 2 I D R 4 0 3 1

12. Use only the forms of the DECLARE statement that are recommended
in Section 5.

Names and Abbreviations

Use meaningful names of up to 32 letters for all important variables
and for all procedures. For very local variables that are used as do
control variables, subscripts, counters, etc., use short meaningless
names such as I, J, K, etc.

Programs are easier to read if they contain full keywords rather than
abbreviations. If abbreviations are used for long keywords such as
CHARACTER, use them consistently.

When referencing members of a structure, use the major structure name
and the member name. If subscripts are used in a structure qualified
reference, place each subscript after the name that has the
corresponding dimension.

Use an explicit pointer qualifier when referencing a based variable,
unless all references to that variable are based on the same pointer.
In the later case, declare the variable to be based on the pointer and
use implicit pointer qualification as explained under BASED STORAGE in
Section 4 and POINTER QUALIFIED REFERENCES in Section 6.

R E V . 0 1 2

I D R 4 0 3 1 C O N D I T I O N M E C H A N I S M

SECTION 13

PL1G USE OF THE CONDITION MECHANISM

The use of the PRIMOS condition mechanism is discussed in detail in The
Prime Users Guide. The procedures that may be called to implement
features of the condition mechanism are described in The PRIMOS
Subroutines Reference Guide. This section discusses detai ls specific
to PLIG's use of the condition mechanism.

INFORMATION STRUCTURE

The standard PL/I information structure is used to communicate the
value of the ONCODE builtin function. This structure is as follows:

DCL 1 INFO BASED,
2 FILE_PTR POINTER,
2 INFO_STRUCT_LENGTH FIXED BIN,
2 ONCODE_VALUE FIXED BIN,
2 RET_ADDR POINTER;

When invoked, the condition mechanism searches the stack backwards
unti l i t finds a condit ion frame. This condit ion frame is used to
determine the value to be returned. If no condition frame is found,
the value 0 is returned.

The value of the ONLOC built-in function (see Section 10) is determined
by searching the stack backwards until a condition frame has been
found. The backward search continues, looking for the first PL1G
procedure frame whose name does not begin with F$, P$, or 1$, since
these cha rac te r s a re used t o deno te r un - t ime suppo r t (l i b ra r y)
routines. (A PL1G procedure frame is known by Bit 5 of the FLAGS word
of the stack frame being set. The procedure name is indicated by the
owner pointer of all PL1G stack frames, since it points to the ECB of
the procedure, which is followed by the name of the procedure). The
name of that procedure is returned as the value of the function.

The values of the ONFILE and ONKEY built-in functions (see Section 10)
are determined by finding the information structure described in in the
previous paragraphs and using the fi le pointer in the informat ion
structure to extract the data from the file control block.

The actual values of the ONCODE built-in function are subject to
change. They are intended for informational purposes only, and users
are strongly advised not to make program control decisions based on
these values. However, the file named SYSC0M>0NC0DES.PL1 is provided
for those users who wish to allow an on-unit to print the additional
explanatory information normally given by the system default on-unit.

1 3 - 1 A p r i l 1 9 8 0

S E C T I O N 1 3 I D R 4 0 3 1

The following program fragment will accomplish that function:

/* Previous program text */

ON ERROR BEGIN;

%INCLUDE 'SYSCOM>ONCODES.PL1';
DECLARE ONCODEJ/ALUE FIXED BIN;

ONCODE_VALUE = ONCODE();

IF ONCODE_VALUE > 0 & ONCODE_VALUE <= MAX_IO_ONCODE
THEN PUT SKIP LIST
('ERROR SIGNALED: ' II IO_ONCODE_MESSAGE(ONCODEJ/ALUE)) ;

ELSE IF ONCODEJ/ALUE >= ONCODE_BASE & ONCODEJ/ALUE < ONCODE_BASE +
NEXT_AVAILABLE_CODE

THEN PUT SKIP LIST
('ERROR SIGNALLED: ' II ONCODE_MESSAGE (ONCODEJ/ALUE -
ONCODE_BASE + 1));

ELSE PUT SKIP LIST
('ERROR SIGNALED: (NO AVAILABLE ONCODE() VALUE)');

PUT SKIP;
GO TO RECOVERY_LABEL;

END;

R E V . 0 1 3

I D R 4 0 3 1 P L 1 G C O M P I L E R

SECTION 14

USING THE PL1G COMPILER

INTRODUCTION

Prime's compiler accepts a source program meeting the PL/I Subset G or
the PL1G standard. It can output a source listing, error and
statistics information, an object file, and various messages. Errors
are printed at the terminal as the compiler detects them.

This section tells:

• How to invoke the compiler

• How to specify options to the compiler

• The significances of the various messages that are printed
during compilation

• The meanings of the various compiler options

INVOKING THE COMPILER

The PL1G Compiler is invoked by the PL1G command to PRIMOS:

PL1G pathname [-option 1] [-option 2] . . . [-option n]

pathname The pathname of the PL1G source program to be compiled.

options Mnemonics for the options controlling compiler functions.

All mnemonic options begin with a dash "-". Example:

PL1G TEST1 -RANGE -DEBUG -LISTING

will cause TEST1 to be compiled with the options given.

COMPILER ERROR MESSAGES

For each error encountered in the program, an error message will be
printed at the terminal and in the source listing if one exists. The
general format of an error message is:

1 4 - 1 A p r i l 1 9 8 0

S E C T I O N 1 4 I D R 4 0 3 1

ERROR xxx SEVERITY y BEGINNING ON LINE zzz
explanation

x x x E r r o r C o d e

y S e v e r i t y c o d e

zzz L ine number where er ror beg ins

explanation Description of the error, and possible remedies.

The significance of the severity code is:

S e v e r i t y D e s c r i p t i o n

1 W a r n i n g .

2 E r r o r t h a t h a s b e e n
corrected.

3 U n c o r r e c t e d e r r o r - p r e v e n t s
o p t i m i z a t i o n a n d c o d e
generation.

4 E r r o r t h a t p r e v e n t s f u r t h e r
compilation.

PL1G Error Messages are self-explanatory. They are not listed in this
guide, since such a listing could only repeat information already given
in the individual messages.

END-OF-COMPILATION MESSAGE

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

xxxx ERRORS (PL1G-REV ZZ.Z)

xxxx The number of compilation errors (0000 indicates a
successful compilation)

ZZ.Z The current revision number of the PL1G compiler

After compilation, control returns to the PRIMOS level.

R E V . 0 1 4

I D R 4 0 3 1 P L 1 G C O M P I L E R

COMPILER OPTIONS

The available compiler options can be categorized as follows:

• Specify the source file

• Specify the existence and contents of the source listing

• Specify the handling of error and statistics information

• Specify the existence and properties of the object code

Compiler options generally come in pairs: for each one, there is a
converse option having the opposite effect. Most option pairs direct
the compiler to do/not-do some action. A few present a choice between
two actions. One member of each pair is always the default.

Not all options can be specified explicitly. When either member of an
option pair could be a desirable default at some installation, both
options are explicitly available, so that the default can always be
reversed. When only one member could be a desirable default, that
option cannot be explicitly specified; it is selected by simply
accepting the default.

In the following list, each option is given along its converse.
Options which cannot be given explicitly are printed in lowercase
without an initial dash. For each pair, the Prime-supplied default is
underlined. Commonly used options are marked with an asterisk: new
users should skip over the unasterisked options.

Some options require an argument in addition to the option
specification. The argument follows the option, and is not preceded by
a dash. Options may be given in any order.

Table 14-1 lists the options in the order that they are discussed
below. At the end o f th is sect ion, Tab le 14-2 l i s ts them
alphabetically with their abbreviations, to provide a quick reference.

1 4 - 3 A p r i l 1 9 8 0

SECTION 14 IDR4031

Table 14-1. Compiler Options

Specify the Source File

-S and -I
-UPCASE / -LCASE

Give name of source file
Convert source file to upper case

Specify the Existence and Contents of the Source Listing

-L [argument]
-XREF / noxref
-EXPLIST / noexplist
-OFFSET / nopffset
-NESTING / nonesting

Controls existence of listing file
Cross reference in source listing
Assembly code in source listing
Offset map in source listing
Nesting level in source listing

Specify the Handling of Error and Statistics Information

-SILENT / nosilent
-STATISTICS / nostatistics

Suppress Warning Messages
Print compilation statistics

Specify the Existence and Properties of the Object Code

-B [argument]
-BIG / nobig
-64V / -321
-DEBUG / nodebug
-OPTIMIZE / -NOOPTIMIZE
-PRODUCTION / noproduction
-RANGE / norange

Controls existence of object file
Controls dummy array handling
Controls addressing mode
Controls generation of debugger code
Controls optimization
Controls generation of debugger code
Inserts range-checking code

* Indicates options most useful to new users.

Prime-supplied defaults are underlined.

REV. 0 14

I D R 4 0 3 1 P L 1 G C O M P I L E R

Specify the Source File

The source file is usually designated by pathname immediately after the
PL1G command. Alternatively, it may be given in an option. Lowercase
letters in the source can be automatically mapped to uppercase before
compilat ion.

▶ -S[OURCE] pathname and -I [NPUT] pathname

Either of these can be used to designate the source file to be
compiled, as an alternative to naming the file immediately after the
PL1G command. The following are equivalent:

PL1G pathname -RANGE -BIG

PL1G -RANGE -BIG -I pathname

PL1G -BIG -S pathname -RANGE

The pathname must not be designated more than once.

^ -UPCASE / -LCASE

Controls mapping of lowercase to uppercase letters in a source program.

-UPCASE: Any lowercase letters in the source will be treated as
uppercase by the compiler, except in character constants.

-LCASE: Lower and uppercase letters remain distinct.

Specify the Existence and Contents of the Source Listing

The PL1G compiler's primary output to the programmer is the source
listing. When the -L option is given, a basic source listing is
created, containing:

• Date and time of compilation

• Options in effect

• Source text

• External entry points

• Symbol-Table Listing

• List of errors

1 4 - 5 A p r i l 1 9 8 0

S E C T I O N 1 4 I D R 4 0 3 1

Additional options can be given, to cause additional data to be
inserted into the source listing: a cross reference, offset map, or
pseudo-assembly code listing may be included. If such an option is
given but no source listing was specified, -L YES will be assumed.

▶ * -L[ISTING] [argument]

Controls creation of the source listing file. The argument may be:

pathname Listing will be written to the file pathname.

YES Listing will be written to a file named Ljorogram,
where program is the name of the source file.

TTY The listing will be printed at the user terminal.

SPOOL The listing will be spooled directly to the line
printer. Default SPOOL arguments are in effect.

NO No listing file will be generated.

When no -L option is given, -L NO will be presumed. When -L is given
with no argument, -L YES will be presumed.

▶ * -XREF / noxref (Implies -L)

Controls generation of a cross reference

-XREF: A cross reference will be appended to the source listing. A
cross reference lists, for every variable, the number of every
line on which the variable was referenced.

noxref: No cross reference will be generated.

^ -EXPLIST / noexplist (Implies -L)

Inserts a pseudo-assembly code listing into the source listing.

-EXPLIST: Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on PMA, see The Assembly Language
Programmer's Guide, FDR3059.

noexplist: No assembler statements are printed.

R E V . 0 1 4

I D R 4 0 3 1 P L 1 G C O M P I L E R

▶ -OFFSET / nooffset (Implies -L)

Appends an offset map to the source listing.

-OFFSET: An offset map is appended to the source listing. For each
statement in the source program, the offset map gives the offset in the
object file of the first machine instruction generated for that
statement.

nooffset: No offset map is created.

▶ -NESTING / nonesting (Implies -L)

Includes logical control nesting level in the source listing.

-NESTING: Each line in the source listing is printed with a number
indicating the number of PROCEDURE and BEGIN blocks and DO groups
containing the statement(s) on that line. This option is useful in
tracing flow of control and matching END statements with their
corresponding DO, BEGIN, and PROCEDURE statements.

nonesting: No nesting numbers are produced.

Specify the Handling of Error and Statistics Information

Level 1 error messages (warnings) can be suppressed if desired.
Compiler statistics can be printed at the terminal after each phase of
compilation, but not to a user file other than a COMOUTPUT file.

^ -SILENT / nosilent

Suppresses WARNING messages.

-SILENT: Level 1 Error Messages will not be printed at the terminal,
and will be omitted from any listing file.

nosilent: Level 1 Error Messages are retained.

▶ -STATISTICS / nostatistics

Controls printout of compiler statistics.

-STATISTICS: A list of compilation statistics is printed at the
terminal after each phase of compilation. For each phase the list
contains:

• DISK: Number of reads and writes during the phase,
excluding those needed to obtain the source file.

• SECONDS: Elapsed real time.

1 4 - 7 A p r i l 1 9 8 0

S E C T I O N 1 4 I D R 4 0 3 1

• SPACE Internal buffer space used for symbol table, in 16K
byte units.

• PAGING Disk I/O time.

• CPU CPU time in seconds, followed by the clock time
when the phase was completed.

nostatistics: Statistics are not printed.

Specify the Existence and Properties of the Object Code

For a given source program, the compiler can produce a variety of
object programs or none at all, depending on the options given. The
areas open to programmer control are:

• Creation of the object file

• Storage allocation and addressing

• Compiler augmentation of the object code

Creation of the Object File: The -B option controls the existence and
naming of the object file, but not the properties it will have.

^ * -B[INARY] [argument]

The argument may be:

pathname Object code will be written to the file pathname.

Y E S O b j e c t c o d e w i l l b e w r i t t e n t o t h e fi l e n a m e d
B_program, where program is the name of the source
fi l e .

NO No binary file will be created. Specified when only a
syntax check or source listing is desired.

When no -B option is given, or -B without an argument is given, -B YES
will be presumed.

R E V . 0 1 4

I D R 4 0 3 1 P L 1 G C O M P I L E R

Storage Allocation and Addressing: By giving appropriate options, the
programmer can cause compiled subprograms to handle BASED and PARAMETER
aggregates longer than a segment, and can determine the addressing mode
(64V or 321) to be used in the object file.

▶ -BIG / nobig

Determines code generated for BASED or PARAMETER aggregate references
in a subprogram.

-BIG: A BASED or PARAMETER aggregate can become associated with any
aggregate.

nobig: A BASED or PARAMETER aggregate can become associated only with
an aggregate that does not cross a segment boundary.

^ -64V / -321

These determine the addressing mode to be used in the object code. 64V
is a segmented virtual addressing mode for 16-bit machines. 321 is a
segmented virtual mode which takes maximum advantage of the 32-bit
architecture of Prime's more advanced models (P450 and up). R and S
modes (relative and sectored addressing) are not available for PL1G.

Augmented Object Code
When no augmented-code options are given, the source program is
compiled statement by statement, and the resulting object code becomes
the object file. Alternatively, the compiler can optimize the object
code, and can add additional code to provide range checking or the
capacity to run under the symbolic debugger.

^ * -DEBUG / nodebug

Controls generation of code for the debugger.

-DEBUG: The object file is modified so that it will run under the
symbolic debugger. Execution time is increased. The code generated
will not be as highly optimized.

nodebug: No debugger code is generated.

1 4 - 9 A p r i l 1 9 8 0

S E C T I O N 1 4 I D R 4 0 3 1

▶ * -OPTIMIZE / -NOOPTIMIZE

Controls the optimization phase of the compiler.

-OPTIMIZE: The object code will be optimized. Optimized code runs
more efficiently than non-optimized code, but takes somewhat longer to
compile.

-NOOPTIMIZE: Optimization does not occur.

^ -PRODUCTION / no production

Alternative option controlling code for the debugger.

-PRODUCTION: Similar to DEBUG, except that the code generated will not
permit insertion of statement break points. Execution time is not
a ffec ted.

noproduction: Production-type code is not generated.

▶ * -RANGE / norange

Controls error checking for out-of-bounds values of array subscripts
and character substring indexes.

-RANGE: Error-checking code is inserted into the object file. Should
an array subscript or character substring index take on a value outside
the range specified when the referenced data item was declared, the
ERROR condition will be signalled. (Note that range checking decreases
the efficiency at.the generated code.)

norange: Out-of-bounds values will not be detected. The program will
be more vulnerable to errors, but will execute more quickly.

OPTION ABBREVIATIONS

The PL1G compiler options may be abbreviated, as follows:

The abbreviations -L, -B, -I, and -S stand for -LIST, -BINARY, -INPUT,
and -SOURCE, respectively, regardless of what other abbreviations are
used.

Except where the above rule takes precedence, the abbreviation for any
compiler option is the shortest string of leftmost characters from the
option's name that uniquely identify the option. Any number of
additional characters, up to the complete name, may also be given.

These rules produce the abbreviations shown in Table 14-2. The table
is also intended to provide a quick alphabetical reference for those
already familiar with the compiler options.

R E V . 0 1 4 - 1 0

IDR4031 PL1G COMPILER

Table 14-2. Summary of Compiler Options and Abbreviations
(Defaults are underlined.)

Opt ion Abbreviat ion Significance

-BIG

-BINARY

-DEBUG

-EXPLIST

-INPUT

-LCASE

-LIST

-NESTING

-NOOPTIMIZE

-OFFSET

-OPTIMIZE

-PRODUCTION

-RANGE

-SILENT

-SOURCE

-STATISTICS

-UPCASE

-XREF

-321

-64V

-BIG

-B

-DE

-EX

- I

-LC

- L

-NE

-NOOP

-OF

-OP

-P

-R

-S I

-S

-ST

-U

-X

-3

-6

Boundary-spanning code

Creation of object file

Debugger code

Expanded source listing

Designate source file

No source-file case conversion

Creation of source listing

Indicate nesting level

Don't optimize object code

Offsets in source listing

Optimize object code

Generate production code

Check subscript ranges

Suppress warning messages

Designate source file

Print compiler statistics

Convert to uppercase

Generate cross-reference

Produce 321 mode code

Produce 64V mode code

14 - 11 April 1980

Appendices

I D R 4 0 3 1 G L O S S A R Y

APPENDIX A

GLOSSARY OF PL1G TERMS

• ALIGNED

An attribute specifying that the declared bit string data is to be
aligned on a convenient storage boundary, and, if necessary, to use
more bits of storage than are specified by the bit string's declared
length.

• ALLOCATE

A statement causing storage to be set up for the based variable named
in the statement and setting a pointer to the storage allocated.

SET Clause: A clause of the ALLOCATE statement specifying a pointer
variable whose value is to be set and which identifies the generation
of storage for the based variable.

• Argument Passing

Arguments are passed by reference and by value.

By Reference: Where the parameter and the argument describe the same
storage, the argument is said to have been passed by reference.

By Value: If the argument is an expression, function reference,
b u i l t - i n f u n c t i o n r e f e r e n c e , c o n s t a n t , p a r e n t h e s i z e d v a r i a b l e
reference, or a reference to a variable with a data type that does not
match the parameter, then, the argument is copied to a temporary block
of storage in the caller's stack frame, which is then passed to the
parameter instead of the actual argument; the argument is said to be
passed by value.

• Arithmetic Data

A value whose data type has base, scale, and precision, and can be used
in computation.

• Array

An n-dimensional ordered set of values (elements) all having the same
data type.

April 1980

A P P E N D I X A I D R 4 0 3 1

Elements of an array are referenced by their position within an array.
Each array has a specified (declared) number of dimensions and each
dimension has a specified lower and upper bound.

• Array Bound

That component of the dimension attribute that defines the upper or
lower limit of a dimension of an array.

• Array Dimensioning

The subdivision of array elements into logical sets, i.e., each
dimension of an array specifies the number of elements in a logical
se t .

• Arrays of Structures

Structures, like other variables, can be declared as arrays and may
contain arrays as members.

• Assignment

A statement used to evaluate expressions on the right of the assignment
symbol (=) and assign the result of the evaluation to variables or
pseudo-variables on the left of the assignment symbol (i.e., the target
•f the assignment).

• A t t r i bu te

A property that can be associated with an identifier that characterizes
the identifier or the object represented by the identifier.

• Attribute Factoring

Enclosure of a list of identifiers and partial attribute sets in
parentheses followed by the set of attributes which are common to all
of them; i.e., repeated specification of the same attribute for many
i d e n t i fi e r s .

• AUTOMATIC

An attribute specifying allocation of storage for the associated
variable on each entry to the block which contains the declaration and
release of storage upon exit from that block.

REV. 0

I D R 4 0 3 1 G L O S S A R Y

• Base

Either BINARY or DECIMAL.

• BASED

An attribute specifying that the address of the storage referenced is
supplied by a pointer value. This storage may be managed by the
ALLOCATE and FREE statements or the ADDR built-in function may be used
to access other storage.

• BEGIN

A statement that defines the beginning of a begin block.

• BINARY

An attribute specifying that the associated identifier has radix (base)
two.

• BIT

An attribute specifying the associated identifier to be bit-string
data.

• Bit String

A sequence of binary digits that can be operated on with the string
funct ions.

• Bit String Data

A value whose data type is BIT or BIT ALIGNED.

• Blanks

A character used as a separator. Names and constants not otherwise
separated must be separated by one or more blank characters.
Additional blanks may be used around punctuation or between names or
constants and punctuation, but are not required.

April 1980

A P P E N D I X A I D R 4 0 3 1

• Block

A program section of organized statements beginning with a PROCEDURE or
BEGIN statement and ending with the matching END statement delimiting
the scope of identifiers declared within the block without the EXTERNAL
attribute. See external, internal blocks, procedure.

Activation of Begin Block: A begin block is activated when control
passes to the BEGIN statement in a normal sequential manner.

Activation of a Procedure Block: A procedure block is activated when
control is passed to it by a procedure reference [consider recursion]
(a function reference or CALL statement).

Begin Block: An internal block starting with a BEGIN statement and
ending with an END statement.

Dynamic Descendence of Blocks: Dynamic descendence is a term
applicable to block relationships where a number of blocks are active
simultaneously. Any block is a dynamic descendent of another block if
it is activated from that block by a CALL statement, function
reference, flow of control (for BEGIN blocks), or (on-unit) signal. A
non-local GO TO passes control from block A to block B, thus
deactivating block A and all Block B's dynamic descendents and leaving
block B as the last extant active block.

External Block: A procedure block whose entry name is not within the
scope of any (other) block. See procedure.

Immediate Dynamic Descendent Block: When a block (A) directly
activates another block (B) , block B is the immediate dynamic
descendent of block A.

Internal Procedure Block: A procedure block whose entry name is within
the scope of an encompassing block. See procedure.

Procedure Block: A block consisting of a series of statements
beginning with a PROCEDURE statement and ending with an END statement.

Procedure Block Name: A name designating the entry point to a
procedure block, (i.e., the name of the PROCEDURE statement).

Procedure Block Reference: Invocation of a procedure by CALL statement
or function reference.

Recursive Procedure Block: A procedure block that calls itself or is
called by one of its dynamic descendents.

REV. 0

IDR4031 GLOSSARY

Termination of Begin Block: A begin block is terminated' by: (1)
execution of the END statement for the block or (2) a non-local GO TO.

Termination of Procedure Block: A procedure block is terminated: (1)
by execution of a RETURN statement or the END statement for the block;
(2) by execution of a non-local GO TO statement.

• BUILTIN

An attribute specifying that the declared name is a built-in function,

• Built-in Function List

1. Arithmetic Built-in functions:

A B S C E I L D I V I D E E X P F L O O R

L O G L 0 G 2 L O G 1 0 M A X M I N

MOD ROUND SIGN SQRT TRUNC

2. Trigonometric Built-in functions:

ACOS AS IN ATAN ATANH ATAND COS

C O S D C O S H S I N S I N D S I N H

TAN TAND TANH

3. String Built-in Functions:

B O O L C O L L AT E C O P Y I N D E X L E N G T H

S T R I N G S U B S T R T R A N S L A T E V A L I D

VERIFY

4. Conversion Built-in functions:

B I N A RY B I T B Y T E C H A R A C T E R

FIXED FLOAT RANK DECIMAL

5. Condition Built-in functions:

ONCODE ONFILE ONKEY ONLOC

April 1980

A P P E N D I X A I D R 4 0 3 1

6. Miscellaneous Built-in functions:

ADDR DATE DIMENSION HBOUND LBOUND LINENO

NULL PAGENO UNSPEC TIME

• Built-in Function Reference

A reference to a built-in function. Such a reference always produces
the value of that function (it is never an entry value).

• CALL

A statement that creates the block activation of a procedure identified
by the reference. The reference must be an entry name, entry variable,
or entry-valued function.

• CHARACTER

A n a t t r i b u t e s p e c i f y i n g i t s a s s o c i a t e d i d e n t i fi e r t o b e
character-string data.

• Character String

A sequence of characters that can be operated on with the string
funct ions.

• Character-String Data

A value whose data type is CHARACTER(n) or CHARACTER(n) VARYING.

• CLOSE

A statement that closes the file control block identified by the
reference. The reference must identify a file name, file variable, or
file-valued function.

• Comments

A non-executable remark added by the programmer. The general form of a
comment is: /* Any sequence of characters except an asterisk followed
immediately by a slash */. Comments may occur anywhere a blank could
appear (i.e. between any two tokens).

REV. 0

I D R 4 0 3 1 G L O S S A R Y

• Compound Statement

Compound statements are statements that contain another statement.
PL1G has two compound statements: the IF statement and the ON
statement. See Section 9.

• Condition-names

Names that may be specified in PL1G ON or SIGNAL statements. The legal
condition names are:

ENDFILE, ENDPAGE, ERROR, and KEY

• Constant

A sequence of characters that represents a particular value.

Arithmetic Constants: Arithmetic constants represent decimal values.
(Binary arithmetic values have no constant representation, but decimal
constants can be converted to binary by using them in a context that
expects a binary arithmetic value).

Bit-String Constant: Zero or more binary digits enclosed in single
quotation marks followed by the letter B. For example:

'0100'B

Bit-string constants may also be written in octal and hexadecimal
notation. For example:

'775'B3 /* octal notation */

•A70'B4 /* hexadecimal notation */

Character String Constant: Zero or more characters enclosed in single
quotation marks. For example:

•98.6F1

Fixed-Point Constant: One or more numeric digits with optional sign
and decimal point. For example:

7 . 5

Floating-Point Constant: One or more numeric digits with an optional
decimal point. These digits are followed by the letter "E", in turn,
followed by an optionally signed exponent representing an integral
power of 10. For example:

April 1980

A P P E N D I X A I D R 4 0 3 1

3.12E-11

Integer Constant: One or more numeric digits. For example:

25

• Conversion

When a value is assigned to a variable, it is converted to the data
type that has been declared for that variable.

• Data Type, Variable

A variable's data type determines what kind of values the variable can
hold.

• Data Type Attribute

Data type attributes are:

FIXED BINARY

FIXED DECIMAL

FLOAT DECIMAL

FLOAT BINARY

PICTURE

CHARACTER

CHARACTER VARYING

BIT

BIT ALIGNED

POINTER

LABEL

ENTRY

FILE

REV. 0

I D R 4 0 3 1 G L O S S A R Y

• Data Type, Value

The data type of a value determines which operations can be performed
on the value and how it can be represented in storage.

• Data Type, Constant

The data type of a constant is determined by the syntax of a constant.
See constant.

• DECIMAL

An attribute specifying that the associated identifier has radix (base)
10.

• Declaration

The declaration of a name determines the meaning of the name. There
are two kinds of declaration in PL1G: the DECLARE statement and the
label prefix. See Section 5.

• Declared Names

A name used to denote an object operated upon by the program such as:
a variable, a file, or a label.

• DECLARE Statement

A statement that clearly establishes the meaning of names. It is not
an executable statement, and it may appear anywhere in a program except
as part of a compound statement.

• DEFINED

An attribute that is used to specify an alternative description of
another variable.

• DELETE

A statement that deletes a record from a KEYED SEQUENTIAL UPDATE file,

April 1980

A P P E N D I X A I D R 4 0 3 1

DIMENSION

An attribute consisting of a list of bound pairs specifying the number
of dimensions of an array, and the bounds of the dimension. This
attribute also specifies that the declared name (identifier) is an
ar ray.

• DO

A statement delimiting the start of a DO-group and possibly specifying
the manner of iteration of statements within the group. There are four
kinds of DO statements: s imple-do, do-whi le, do-repeat, and
i t e ra t i ve -do .

• DO-group

A sequence of statements headed by a DO statement and ending with an
END statement.

Simple-DO: A simple-DO statement execution causes the statements in
the DO-group to be executed once and is used mainly for grouping
statements used in THEN and ELSE clauses of IF statement.

DO-while:

DO WHILE (expression);

Execution of a DO-while statement causes the specified expression to be
evaluated to produce a value that is a bit string of length one. If
the bit string is TRUE (i.e. 'l'B) the statements of the DO-group are
executed, and when the corresponding END statement is executed, control
is transferred back to reevaluate the specified expression and test for
a new bit string value. If the bit string is FALSE (i.e. '0'B) the
statements in the DO-group are not executed and execution resumes with
the statement following the corresponding END statement.

WHILE: A keyword separator that may appear in a DO statement. WHILE
is followed by a parenthesized specification of conditions for
iteration of the DO-group.

DO-repeat: DO index = start REPEAT next [WHILE (test)];

Iterative-DO: DO index = start [TO finish] [BY increment] [WHILE
(t e s t)] ;

BY: A keyword separator that may appear in a DO statement specifying
the increment of the control variable for each iteration.

R E V . 0 A - 1 0

I D R 4 0 3 1 G L O S S A R Y

TO: A keyword separator that may appear in a DO statement specifying
the limits of incrementation of the control variable.

Control Variable: A variable appearing in a DO statement that is
assigned different values during each iteration of the DO-group. A
control variable is also called an index variable.

DO-loop: An iterated DO-group.

DO Specification: The portion of a DO-repeat or an iterative-DO which
is specified to the right of the equals sign.

• Edit Directed I/O

Transmission of data to or from a stream file under control of a
format- l ist .

• END

A statement terminating DO groups, BEGIN blocks, and PROCEDURE blocks.

• Entry

An identifier associated with a procedure, by which reference may be
made to the procedure. Procedures which are not part of the compiled
module must be declared with the ENTRY attribute, and if they are
functions, the RETURNS attribute. Entry data is used in PL1G to
describe subroutines and functions that are not built in. ("ENTRY" is
used instead of "PROCEDURE" because in full PL/I procedures can be
entered at points other than the PROCEDURE statement.)

• ENTRY

An attribute specifying that the associated identifier is an entry
constant or variable.

• Expression

An expression consists of operators and operands.

• Extents

Values that determine the variable's storage size; extents are
evaluated when storage is allocated for the variable.

1 1 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

EXTERNAL

An attribute specifying that all declarations of the associated
identifier with the EXTERNAL attribute will share the same storage,
allowing communication among blocks.

• F i l e

An organized collection of data stored in the computer system primary
or secondary storage. A file is referenced by using a file name
declared with the FILE attribute.

Record File: A file organized into a set of discrete records that are
e i t h e r a c c e s s i b l e s e q u e n t i a l l y o r a c c e s s i b l e d i r e c t l y b y
character-string valued keys.

Stream File: A file containing a sequence of characters organized into
l i nes .

File Constant: A name declared with the FILE attribute. A file
constant cannot be the target of an assignment statement.

File Control Block: A block of STATIC storage associated with each
file constant in which information about the current status of the file
is kept while the file is open.

File Variable: A name declared with the FILE and VARIABLE attributes.
A file variable can be assigned file values (i.e., a file constant or
the value of another file variable previously assigned a file
constant) .

File Value: A file value designates a file control block that can be
opened or closed, and which, thereby, can be connected to various files
and devices known to the operating system. File values result from
re fe rences to fi le cons tan ts , fi le va r iab les , and fi le -va lued
funct ions.

• FILE

An attribute specifying the declared identifier (name) is a file, or if
used with the VARIABLE attribute, the name is a file variable.

• FIXED

An attribute specifying the associated variable as representing a
fixed-point number.

R E V . 0 A - 1 2

I D R 4 0 3 1 G L O S S A R Y

• FLOAT

An attribute specifying the associated variable as representing a
floating-point number.

• FORMAT

A statement that defines a data format which may be referenced by a
edit-directed GET or PUT statement.

• Format List

A format list controls the transmission of data to or from a stream I/O
file during the execution of an edit-directed GET or PUT statement.

• Format-items

Elements of a format list, separated by commas.

• FREE

A statement releasing storage allocated for a based variable.

• Function Reference

A procedure reference that returns a value.

• GET

A statement that inputs (reads) information from a stream-I/O file.

• GO TO

A statement causing transfer of control.

Local GO TO: A GO TO statement transferring control within the block
in which it appears.

Non-local GO TO: A GO TO statement transferring control to a statement
in a dynamically encompassing block.

- 1 3 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

I d e n t i fi e r

A string of alphanumeric and underscore (_) characters which begins
with an alphabetic character. Identifiers are also called names.

• IF

A statement causing program flow to depend upon the truth value of an
expression.

ELSE: An IF statement clause specifying alternative transfer of
control should the necessary conditions of the IF statement not be met.

THEN: An IF statement clause specifying the path of control to be
taken when the conditions of the IF statement are met.

• %INCLUDE

A PL1G statement that allows the insertion of the contents of a text
file in the place of the %INCLUDE statement.

• INITIAL

An attribute specifying the initial value of a STATIC variable or
member of a STATIC structure.

• INTERNAL

An attribute specifying its associated identifier to be limited to the
scope of the block in which it is declared.

• Keyword

A name used to denote parts of statements such as: verbs, options, and
clauses.

A keyword is an identifier that has specific meaning to the compiler in
particular contexts.

• LABEL

An attribute specifying the associated identifier to be a statement
label variable that can have different statement label constant or
variable values assigned to it.

R E V . 0 A - 1 4

I D R 4 0 3 1 G L O S S A R Y

Label: An identifier associated with a statement by which reference
may be made to that statement.

Label Prefix: An identifier, separated from its associated statement
by a colon, enabling transfer of control to the associated statement by
reference to its label prefix. A label prefix declares a name as the
name of a format, as the name of a procedure, or as a statement label.

• Length

The number of characters in a character string value or the number of
bits in a bit string value.

• Length Attribute

An attribute consisting of a parenthesized constant, expression or
asterisk, specifying the maximum length of varying-length strings or
the length of a fixed-length string. (See precision.)

• Level Number

An integer that specifies the position of the associated identifier
within the hierarchical organization of a structure.

• List-Directed I/O

Transmission of data to or from a stream file without a format-list.

• Major Structure

A structure that is not a substructure (i.e., a level 1 structure).

• Member

An immediate component of a structure.

• Name

A string of alphanumeric and underscore (_) characters. A name is a
sequence of up to 32 letters (both lower- and upper-case), and/or
digits, and/or the underscore (_) and $ characters. The first
character of a name must be a letter. Names are also called
i d e n t i fi e r s .

- 1 5 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

• Null Character String

A character string of zero length.

• Null Pointer

A pointer value produced by the NULL built-in function. A null pointer
is a unique value that does not address any variable and is used to
indicate that a pointer variable does not currently address anything.

• Null Statement

Null is an empty statement that has no effect.

• Null String

A zero length character- or bit-string.

• On-condition

The on-condition is a condition specified in an ON statement.

• ON

A statement specifying the action to be taken when a condition
interrupt occurs for the condition named in the statement.

• On-unit

A BEGIN block or statement (other than PROCEDURE, DO, END, DECLARE or
FORMAT) that describes an action to be taken upon the occurrence of an
on-condition.

• OPEN

A statement that causes the specified file control block to be opened
with the line size, page size, and attributes specified in the OPEN
statement.

R E V . 0 A - 1 6

I D R 4 0 3 1 G L O S S A R Y

• Operand

A part of an expression. It may be: a constant, a variable reference,
a function reference, a built-in function reference, or another
expression.

• Operators

The operators used in PL1G are: +-*/**= ~= <><=>= ~< ~> & ~ I
(or !) and I I (or i!) .

Arithmetic Operators: The arithmetic operators are: +, denoting
addi t ion or prefix posi t ive; - , denot ing subtract ion or prefix
negative; *, denoting multiplication: /, denoting division, and **,
denoting exponentiation.

Bit-String Operators: The bit string operators are: ", denoting NOT;
&, denoting AND; and | (or !), denoting OR.

Comparison Operators: The comparison operators are: >, denoting
greater than; ">, denoting not greater than; >=, denoting greater
than or equal to; =, denoting equal to; "=, denoting not equal to;
<=, denoting less than or equal to; <, denoting less than, and "<,
denoting not less than.

Infix Operators: Operators placed between expressions.

Prefix Operators: The operators +, -, and ~, placed to the left of
expressions.

String Operator: The string operator is I I (or !!), denoting
concatenation.

• Parameter

An identifier in a PROCEDURE statement for which a value is substituted
by an invoking reference.

• PICTURE

An attribute that specifies pictured values for the declared name. The
attribute declaration contains an image of the data and specifies the
editing to be performed each time that a value is assigned to the
var iab le .

1 7 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

PICTURED Data

A value whose data type is determined by the PICTURE attribute or the
P-format in a FORMAT list.

• POINTER

An attribute specifying the declared identifier as a pointer variable
that contains the address of a based storage datum. Used with ADDR,
ALLOCATE, and references to BASED variables.

Pointer Data: A value whose data type is POINTER. This pointer value
is the address of a variable's storage.

Pointer Qualification: Identification of a generation of a based
variable through use of a pointer followed by the pointer qualification
symbol, e.g., Q -> ALPHA. Pointer-valued functions and pointer-valued
built-in functions may also be used as pointer qualifiers.

Pointer Qualification Symbol: The character sequence -> signifies that
the pointer value on the left of -> gives the address to be used with
the BASED variable reference on the right.

Pointer Variable: A pointer is a variable capable of holding the
address of any PL1G variable. It must be declared with the POINTER
data type attribute.

• Precision

The number of significant binary or decimal digits maintained for the
value of an arithmetic variable and, optionally, how many of those
digits are fractional. As an attribute it is specified by a
parenthesized decimal number or pair of numbers separated by a comma
which is the number of significant binary or decimal digits to be
maintained for either a fixed-point or floating-point datum and,
optionally (for fixed point data only), the number of those digits
which are fractional.

• Procedure

A sequence of statements beginning with a PROCEDURE statement and
terminated by the matching END statement. A procedure defines a block
of statements and is sometimes called a block.

External Procedure: A procedure not contained within another
procedure.

R E V . 0 A - 1 8

I D R 4 0 3 1 G L O S S A R Y

Internal Procedure: A procedure that is contained within another
procedure.

Nested Procedure: See internal procedure

Procedure Reference

Any reference fol lowed by an argument l ist consist ing of a
parenthesized list of expressions separated by commas, or followed by
an empty argument list () . (An empty argument list may be omitted in
the procedure reference of a CALL statement.)

• Program

The single result of compiling, loading, and executing one or more
program modules.

• Program Module

The program text that is input to the compiler.

• Pseudo-Variable

A built-in function used on the left side of an assignment statement.
In each case, the built-in function acts as if it were a variable. The
pseudo-variables are PAGENO, STRING, SUBSTR, and UNSPEC.

• Punctuation

Punctuation symbols are either operators or separators.

• PUT

A statement that outputs (writes) information to a stream-I/O file.

• READ

A statement that causes a record file to be read.

- 1 9 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

• Recursive procedure

A procedure that can call itself. The notion of recursive is derived
from the mathematical concept of a recursive function, which is a
function that may be defined in terms of itself. For example, N! (N
factorial) is defined as:

N! = 1 for N=l
N! = N * (N-1)! for N>1

• Reference

Use of a name in a context other than in a declaration.

In order to determine the meaning of the reference, the compiler
searches for the declaration of the name. This search resolves the
reference by associating it with a declaration of the name.

A reference is a name, together with any subscripts, pointer qualifier,
or structure names necessary to indicate the object of the reference.
References to procedures or built-in functions may also contain an
argument list.

Symbol Reference: A name without any subscripts, pointer reference, or
argument list.

Subscripted Reference: A name that has been declared as an array,
followed by a parenthesized list of subscript expressions.

• %REPLACE

A PL1G extension statement that allows the replacement of each
subsequent occurrence of a name by an optionally-signed constant.

• Reserved Names

There are no reserved names (i.e., reserved words) in PL1G.

• RETURN

A statement that terminates the current procedure activation and
returns control to the calling block.

R E V . 0 A - 2 0

I D R 4 0 3 1 G L O S S A R Y

• RETURNS

An attribute associated with an explicitly declared entry name or an
option in a procedure statement. RETURNS is followed by a
parenthesized list defining the data attributes of the value to be
returned by the entry invoked as a function.

• REWRITE

A statement that replaces a record in a record file that has the KEYED
UPDATE attributes.

• Scale

A scale is either fixed-point (FIXED) or floating-point (FLOAT).

Fixed-point Scale: That format of arithmetic data in which the datum
is a rational binary or decimal number with specified number of digits.

Floating-point Scale: That format of an arithmetic datum in which the
datum is a rational number with a fractional part and an exponent part.

• Scope of a Name

The region of a program over which a name (identifier) is known. The
scope of a name is that region of the program in which the name is
referenceable. The scope of a name includes the block in which it is
declared and all blocks contained within that block, except those
blocks in which the name is redeclared.

• Scope of Declaration

The scope of a declaration includes the block in which it appears and
all contained blocks, except blocks in which the name (identifier) has
been redeclared.

• Separators

Separators are the following characters: () , . ; : and the blank
character.

- 2 1 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

SIGNAL

A statement that signals a specified condition. (Normally used during
debugging to test on-units).

• Stack Frame

A block of storage allocated on a stack used to hold information that
is unique to each procedure activation, such as the location to which
control should return from the procedure activation.

• STATIC

An attribute specifying that storage for the associated variable is
allocated at the start of program execution, and released when the
program terminates.

• Statement

A statement is a sequence of tokens ending with a semicolon. All
statements, except the assignment statement, begin with a keyword that
identifies the purpose of the statement.

Statement Identifier: A keyword naming a statement, e.g., "DO" is the
statement identifier of the DO statement.

Statement Label: A name identifying a statement.

• STOP

A statement which closes all open files and terminates program
execution.

• Storage

Allocation of Storage: Association of a specified region of storage
with a variable.

Automatic Storage: Storage allocated for a variable when the block in
which it is declared is activated and then released when that block is
terminated.

Based Storage: Storage of variables always referenced with a pointer
value that indicates the generation of the variable.

R E V . 0 A - 2 2

I D R 4 0 3 1 G L O S S A R Y

Generation: A single copy of data, representing a specific allocation
of a given variable.

Static Storage: Storage allocated before execution of the program and
released at program termination.

Storage Class: A variable's storage class determines how and when
storage is allocated for the variable.

Storage Class Attribute: The storage class attributes are:

AUTOMATIC

STATIC

BASED

DEFINED

• String

A sequence of bits or characters on which string operations are
allowed.

• Structure

A hierarchically ordered set of variables that may be of different data
types.

• Structure Qualified Reference

A sequence of names written left to right in order of increasing level
numbers. The names are separated by periods. Optionally, blanks may
be inserted around the periods. The sequence must include sufficient
names to make the reference unique.

Ful ly Qual ified Reference: A structure qual ified reference that
includes the name of each containing structure from the major structure
down to the referenced member.

Partially Qualified Reference: A structure qualified reference that is
unique, but one or more of the names of containing structures have been
omitted.

2 3 A p r i l 1 9 8 0

A P P E N D I X A I D R 4 0 3 1

Subroutine Procedure

A procedure invoked by a subroutine reference is called a subroutine
procedure or simply a subroutine. Subroutines can return indirectly
one or more values to the calling procedure through shared variables or
its parameters or may return no values.

• Subroutine Reference

A procedure reference following the keyword CALL is called a subroutine
reference. It does not return a value.

• Subscript

An integer, or integer-valued expression, used to reference an array
element. Elements of an array are referenced using as many subscripts
as the array has dimensions.

• Substructure

A structure that is itself a member of another structure.

• Token

The basic elements of the PL1G language. A token is: a name, a
constant, a punctuation symbol, a comment, or a compile-time text
modification statement.

• Variable

A variable is a named object that is capable of holding values. Each
variable has two properties: data type and storage class.

• VARIABLE

A keyword specifying part of a file or entry data type attribute.
VARIABLE specifies that the declared name is a file variable or entry
var iab le .

• VARYING

A n a t t r i b u t e s p e c i f y i n g i t s a s s o c i a t e d i d e n t i fi e r t o b e a
varying-length string.

R E V . 0 A - 2 4

IDR4031 ABBREVIATIONS

APPENDIX B

ABBREVIATIONS

Abbreviations are provided for certain keywords and builtin function
names. The abbreviations will be recognized as synonymous in every
respect with the full denotations, except that in the case of
builtin-function-names the abbreviations have separate declarations
(explicit or contextual) and name scopes. The abbreviations are shown
to the right of the full denotations in the following list.

ALLOCATE ALLOC
AUTOMATIC AUTO
BINARY BIN
CHARACTER CHAR
COLUMN COL
DECIMAL DEC
DECLARE DCL
DEFINED DEF
DIMENSION DIM
EXTERNAL EXT
INITIAL INIT
INTERNAL INT
PICTURE PIC
POINTER PTR
PROCEDURE PROC
SEQUENTIAL SEQL
VARYING VAR

April 1980

I D R 4 0 3 1 D A T A F O R M A T S

APPENDIX C

DATA FORMATS

OVERVIEW

The PL1G language supports the following data types:

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL
PICTURE

CHARACTER
CHARACTER VARYING
BIT
BIT ALIGNED

POINTER

LABEL
ENTRY

FILE

These data types are described in Section 3. The following provides a
series of descriptions showing how the data is internally represented
in storage, and gives some details about each type of data. In the
statistics for each data type, "P" stands for the precision specified
when an item of the type is declared.

April 1980

A P P E N D I X C I D R 4 0 3 1

FIXED BINARY DATA

A 15- or 31-digit twos-complement binary number.

Precision: 1 <= P <= 31

Default Precision: 15

Alignment: Word.

Storage Requirements: 1 <= P <= 15 One word.
16 <= P <= 31 Two words,

Internal Representation

Precision 1-15: One word.

B i t 1 : S i g n b i t
Bits 2-16: Digits

Precision 16-31: Two words.

B i t 1 : S i g n b i t
Bits 2-32: Digits

REV. 0

I D R 4 0 3 1 D A T A F O R M A T S

FIXED DECIMAL DATA

FIXED DECIMAL data is stored as decimal type 3 packed decimal (one
decimal digit per 4-bit nybble) with a trailing sign nybble. FIXED
DECIMAL data is byte-aligned; therefore, the effective precision is
always odd. For example, FIXED DECIMAL (4,2) is represented in storage
as FIXED DECIMAL (5,2).

Precision: 1 <= P <= 14

Default Precision: 5

Alignment: Byte.

Storage Requirements: FLOOR((P+2)/2) bytes.

Internal Representation

Each nybble holds one decimal digit. The last nybble holds an
indicator of the sign.

April 1980

A P P E N D I X C I D R 4 0 3 1

FLOAT BINARY DATA

Precision: 1 <= P <= 47

Default precision: 23

Alignment: Word.

Storage Requirement: 1 <= P <= 23 2 words,
24 <= P <= 47 4 words,

Internal Representation

Precision 1-23: Two words.

B i t 1 : S i g n
Bits 2-24: Mantissa
Bits 25-32: Exponent

Precision 24-47: Four words.

B i t 1 : S i g n
Bits 2-48: Mantissa
Bits 49-64: Exponent

REV. 0

I D R 4 0 3 1 D A T A F O R M A T S

FLOAT DECIMAL DATA

Precision: 1 <= P <= 14

Default Precision: 6

Alignment: Word.

Storage Requirement: 1 <= P <= 6 2 words,
7 <= P <= 14 4 words

Internal Representation

Precision 1-6: Two words.

B i t 1 : S i g n
Bits 2-24: Mantissa
Bits 25-32: Exponent

Precision 7-14: Two words.

B i t 1 : S i g n
Bits 2-48: Mantissa
Bits 49-64: Exponent

April 1980

A P P E N D I X C I D R 4 0 3 1

PICTURE DATA

Values to be assigned to a pictured variable are first converted to a
decimal value according to the normal PL1G conversion rules. This
converted value is then used as input to the XED machine instruction,
which fills the variable's storage with character data under the
control of an edit subprogram, which is placed in the procedure section
by the compiler before any generated code. The edit subprogram is part
of the following structure:

DCL 1 PICTUREJiNFO,
2 IGNORE FIXED BIN (31),
2 SCALE_FACTOR BIT (8),
2 NUMBER_OF_DIGITS BIT (8),
2 TYPE_OF_VALUE BIT (8),
2 SUBPROGRAM_SIZE BIT (8),
2 CHAR_SIZE (BIT (8),
2 EXP_INDEX BIT (8),
2 EXP_NUMBER_OF_DIGITS BIT (8),
2 BLANK_MEANS_NEGATIVE BIT (1),
2 RESERVED BIT (7),
2 SUBPROGRAM CHAR(PICTURE_INFO.SUBPROGRAM_SIZE);

Picture data is byte-aligned and requires n bytes of storage, where n
is the number of picture characters excluding any V character.

Note

BIN (NUMBERJ)F_DIGITS) and BIN (SCALE_FACTOR) give the
precision of the FIXED DECIMAL value described by the picture
(e.g., PICTURE '99,999V.99' gives a NUMBER_OF_DIGITS of 7 and a
SCALE_FACTOR of 2) .

BIN (SUBPROGRAM_SIZE) gives the number of bytes in the edit
subprogram.

BIN (CHAR_SIZE) gives the number of characters in the picture
value.

BLANK_MEANS_NEGATIVE is 'l'B if the picture has the "+" sign
character.

SUBPROGRAM is the edit subprogram for XED.

TYPE_OF_VALUE, EXPJNDEX, and EXP_NUMBER__OF_DIGITS are used to
support full PL/I features which are not available in Subset G.

REV. 0

I D R 4 0 3 1 D A T A F O R M A T S

CHARACTER DATA

Default Length: 1

Alignment: The ALIGNED attribute has no effect: character data is
always byte-aligned.

Storage Requirement: n bytes, where n is the declared length of the
str ing.

Internal Representation

One character per byte.

April 1980

A P P E N D I X C I D R 4 0 3 1

CHARACTER VARYING DATA

CHARACTER VARYING data is stored as a 16-bit length-word followed by
the string value. Only the number of characters specified by the
length-word are valid.
Default Length: 1

Al ignment: Word.

Storage Requirements: FLOOR (((n+l)/2)+l) words, n is the declared
maximum length of the string.

Internal Representation

Bits 1-16 hold the length of the string. Subsequent bytes hold one
character per byte.

REV. 0

I D R 4 0 3 1 D A T A F O R M A T S

BIT DATA

Default Length: 1

Alignment: Bit data begins on any bit by default. ALIGNED bit data is
word-aligned.

Storage Requirement: FLOOR ((n+15)/16) words for ALIGNED data, and n
bits for unaligned data, where n is the declared length of the string.

Internal Representation

Each data bit is stored in one hardware bit.

April 1980

A P P E N D I X C I D R 4 0 3 1

POINTER DATA

Al ignment: Word.

Storage Requirement: 3 words.

Internal Representation

Three words are used.

B i t 1 : Fau l t code
Bits 2-3: Ring number
Bit 4: Data format indicator
Bits 5-16: Segment number
Bits 17-32: Word number
Bits 33-36: Bit offset (iff bit 4 is set)
Bits 37-48: Reserved

R E V . 0 C - 1 0

I D R 4 0 3 1 D A T A F O R M A T S

LABEL DATA

LABEL values are stored as a pair of two-word items. The first item is
created by taking the two-word pointer that addresses the code
referenced by the label and interchanging the words so that the word
number portion is first. This interchange is performed so that label
values may be passed as arguments to routines that expect a
FORTRAN-style alternate return argument. The second item is a pointer
referencing the stack frame which should be current after control is
transferred to the label.

Alignment: Word.

Storage Requirements: 4 words.

Internal Representation

Four words are used.
First two words: Address of executable statement.

Bits 1-16: Word number
Bit 17: Fault code
Bits 18-19: Ring number
Bit 20: Data format indicator (always 0)
Bits 21-32: Segment number

Second two words: Address of target stack frame.

Bit 33: Fault code
Bits 34-35: Ring number
Bit 36: Data format indicator (always 0)
Bits 37-48: Segment number
Bits 49-64: Word number

- 1 1 A p r i l 1 9 8 0

A P P E N D I X C I D R 4 0 3 1

ENTRY DATA

ENTRY values are stored as a pair of two-word items. The first item is
the address of the ECB of the referenced entry. The second item is the
first-level display pointer to be used by the invoked procedure. The
second pointer value is ignored by EXTERNAL procedures invoked by the
entry variable.

Al ignment: Word.

Storage Requirements: 4 words.

Internal Representation

Four words are used.
First two words: ECB address.

Bit 1: Fault code
Bits 2-3: Ring number
Bit 4: Data format indicator (always 0)
Bits 5-16: Segment number
Bits 17-32: Word number

Second two words: Display pointer.

Bit 33: Fault code
Bits 34-35: Ring number
Bit 36: Data format indicator (always 0)
Bits 37-48: Segment number
Bits 49-64: Word number

R E V . 0 C - 1 2

I D R 4 0 3 1 D A T A F O R M A T S

FILE DATA

At Rev. 17, PL1G SEQUENTIAL files are in standard RDBIN/WRBIN format,
and STREAM files are in standard RDASC/WRASC format. DIRECT files are
supported using PRWF$$ to position to the appropriate word in the file,
which is calculated as:

(KEYVALUE * RECORDLENGTH)

A FILE data item contains the address of the file control block of the
indicated file.

Internal Representation

Two words are used.

B i t 1 : F a u l t c o d e
Bits 2-3: Ring number
Bit 4: Data format indicator (always 0)
Bits 5-16: Segment number
Bits 17-32: Word number

- 1 3 A p r i l 1 9 8 0

IDR4031 CONVENTIONS

APPENDIX D

STACK FRAME AND FUNCTION RETURN CONVENTIONS

LOCATIONS OF RETURNED FUNCTION VALUES

Returns Type Where Returned

V-mode I-mode

fixed bin(l:15) A- reg is te r GR2 (H)

fixed bin(16:31) L - reg i s te r GR2

float b in(l :23) , FAC FAC1
float dec(1:6)

float bin(24:47), DFAC DFAC1
float dec(7:14)

b i t (l : 1 6) A-register GR2(H)

fi l e L-register GR2

p t r FAR0 FAR0

For all other data types, the calling procedure sets up FAR0 to point
to the location at which the function's value is to be returned. When
the function becomes active, it transfers the contents of FAR0 to
SB%+40 to SB%+42 of its stack frame.

STACK FRAME FORMAT

Figure D-l shows a typical stack frame format for a PL1G application.
This figure is followed by a series of notes that explain the stack
frame format entries.

April 1980

APPENDIX D IDR4031

STACK ROOT SEGNO

Return LB

Return KeyB
PBCL

Reserved for future use

Addr of owner's ECB

Runtime support scratch space

ONUNIT PTR

CLEANUP ONUNIT PTR

NEXT EFH PTR

Runtime support scratch space

Addr of function return value

display ptr 1

0 OCTAL

2

4

6

10

12

14

16

20

22

24

26

30

32

34

36

40

42

44

46

50

52

54

56

display ptr n

argument 1 ptr

argument 2 ptr

automatic storage

Figure D-l. Stack Frame Format

REV. 0

I D R 4 0 3 1 C O N V E N T I O N S

Notes on stack frame format:

• Bit 5 of FLAGS will be set for PL1G procedure stack frames.

• SB%+1 to SB%+9 (all offsets referenced in decimal) is the
hardware-defined portion of the stack.

• SB%+18 points to the ECB (Entry Control Block) of the owning
PL1G block, for both procedure and begin blocks. The ECB of a
PL1G procedure block is immediately followed by a char(*)var
giving the name of the procedure/entry it represents.

• SB%+28 to SB%+33 is defined in the documentation for the
CONDITION mechanism in The PRIMOS Subroutines Reference Guide.

• SB%+40 to SB%+42 is always present, whether the block is a
function or not; it is the last item in the stack which is
guaranteed to be present.

• "Display pointers" are used by internal blocks to access
automatic data declared in containing blocks; there will be one
for each level of lookback used in the block. Each display
pointer is the stack pointer of the corresponding block. The
display pointers (if any - may be 0) begin at SB%+43 and are the
last stack item to have a fixed address. Each internal block is
PCL'ed with the stack pointer of its parent block in the
L-register or GR2; this is stored as the first-level display
pointer. Additional levels, if needed, are set up by prologue
code.

• "Argn pointers" are the hardware-defined pointers used to
reference the parameters of a procedure; they begin immediately
following the display pointers.

D - 3 A p r i l 1 9 8 0

IDR4031 ASCI I CHARACTER SET

APPENDIX E

ASCII CHARACTER SET

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage.

• Output Parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software will
compute transmitted parity. Some controllers (e.g., MLC) may
have hardware to assist in parity generations.

• Input Parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit the
host software requirements. Some controllers (e.g., MLC) may
assist in parity error detection.

• The Prime internal standard for the parity bit is one, i.e., '200
is added to the octal value.

KEYBOARD INPUT

Non-printing characters may be entered into text via the editor by
giving the logical escape character (~ by default) followed by the
octal value of the character. The character is interpreted by output
devices according to their hardware.

Example: Typing ~207 will enter one character into the text.

is interpreted as a .BREAK.
is interpreted as a newline (.NL.)
is interpreted as a character erase
is interpreted as line kill
is interpreted as a logical tab (Editor)

CHANGING THE SIGNIFICANCE OF SPECIAL CHARACTERS

When a character having a special meaning to the Prime system is needed
for some other purpose, that meaning can be transferred to another
character with the editor's SYMBOL command (see The New User's Guide to
Editor and Runoff) or with the PRIMOS TERM command (see The PRIMOS
Commands Reference Guide). The original special character is thereby
freed for ordinary use.

April 1980

CTRL--P •220)
.CR. (''215)
ii •242)
? (''277)
\ (•334)

APPENDIX E IDR4031

Table E-l

ASCII Character Set (Non-Printing)

Octal ASCII
Value Char

200 NULL
201 SOH
202 STX
203 ETX
204 EOT
205 ENQ
206 ACK
207 BEL
210 BS
211 HT
212 LF
213 VT
214 FF
215 CR
216 SO
217 SI
220 DLE
221 DC1
222 DC2
223 DC3
224 DC4
225 NAK
226 SYN
227 ETB
230 CAN
231 EM
232 SUB
233 ESC
234 FS
235 GS
236 RS
237 US

Control
C o m m e n t s / P r i m e U s a g e C h a r

N u l l c h a r a c t e r - fi l l e r ~ @
S t a r t o f h e a d e r (c o m m u n i c a t i o n s) ~ A
S t a r t o f t e x t (c o m m u n i c a t i o n s) ~ B
E n d o f t e x t c o m m u n i c a t i o n s ~ C
End o f t r ansm iss ion (commun ica t i ons) ~D
E n d o f I . D . (c o m m u n i c a t i o n s) ~ E
Acknowledge affirmat ive (communicat ions) "F
A u d i b l e a l a r m (b e l l) " G
Back space one position (carriage control) ~H
P h y s i c a l h o r i z o n t a l t a b ~ I
L i ne f eed ; i gno red as t e rm ina l i npu t " J
Physical ver t ica l tab (carr iage contro l) ~K
F o r m f e e d (c a r r i a g e c o n t r o l) " L
Car r i age re tu rn (ca r r i age con t ro l) (1) "M
R R S - r e d r i b b o n s h i f t " N
B R S - b l a c k r i b b o n s h i f t " 0
R C P - r e l a t i v e c o p y (2) ~ P
R H T - r e l a t i v e h o r i z o n t a l t a b (3) " Q
HLF-half line feed forward (carriage control) "R
R V T - r e l a t i v e v e r t i c a l t a b (4) ~ S
HLR-half line feed reverse (carriage control) ~T
Negative acknowledgement (communications) ~U
S y n c h r o n o c i t y (c o m m u n i c a t i o n s) " V
End of transmission block (communications) ~W
C a n c e l ~ X
E n d o f M e d i u m ~ Y
S u b s t i t u t e ~ Z
E s c a p e ~ [
F i l e s e p a r a t o r ~ \
G r o u p s e p a r a t o r ~]
Record separator
U n i t s e p a r a t o r ~ _

REV. 0

IDR4031 ASCI I CHARACTER SET

Notes for Table E-l

1. Interpreted as .NL. at the terminal.

2. .BREAK, at terminal. Relative copy in file; next byte specifies
number of bytes to copy from corresponding position of preceding
l ine .

3. Next byte specifies number of spaces to insert.

4. Next byte specifies number of lines to insert.

Conforms to ANSI X3.4-1968

The parity bit ('200) has been added for Prime-usage.

Non-printing characters (~c) can be entered at most terminals by typing
the (control) key and the c character key simultaneously.

April 1980

A P P E N D I X E I D R 4 0 3 1

Table E-2

ASCII Character Set (Printing)

Oc ta l ASCI I OCTAL ASCI I OCTAL ASCI I
Value Character Value CHaracter Value Character

240 •SP (1) 300 (3 340 N (9)
241 301 341
242 • i (2) 302 342
243 (3) 303 343
244 304 344
245 305 345
246 306 346
247 (4) 307 347
250 310 350
251 311 351
252 312 352
253 313 353
254 (5) 314 354
255 315 355
256 316 356
257 317 357
260 320 360
261 321 361
262 322 362
263 323 363
264 324 364
265 325 355
266 326 366
267 327 367
270 330 370
271 331 371
272 332 372
273 333 373
274 334 374
275 335 375
276 336 ~ (7) 376 ~ (10)
277 (6) 337 (8) 377 DEL (11)

REV. 0

IDR4031 ASCI I CHARACTER SET

Notes for Table E-2

1. Space forward one position

2. Default terminal usage - erase previous character

3. British pound sign in British use

4. Apostrophe/single quote

5. Comma

6. Default terminal usage - kill line

7. 1963 standard T. Default editor use - logical escape

8. 1963 standard <

9. Grave

10. 1963 standard ESC

11. Rubout - Not used for erase function by the Prime system

Conforms to ANSI X3.4-1968
1963 variances are noted

The parity bit ('200) has been added for Prime usage.

April 1980

IDR4031 PL/I and PL/I Subset G

APPENDIX F

DIFFERENCES BETWEEN FULL PL/I AND PL/I SUBSET G

FEATURES SUPPORTED IN PL/I SUBSET G

For a list of the features in PL/I Subset G, scan the index entries
under the headings: Attributes, Built-in functions, Conditions, Data
types, Declarations, Files, Input/Output, Options, Statements, and
Storage classes. The few differences between PL/I Subset G and PL1G
are listed under "THE PL1G LANGUAGE" in Section 1.

FEATURES NOT SUPPORTED IN PL/I SUBSET G

The following features of full PL/I are not supported in PL/I Subset G.
Features marked with a star (*) are non-standard extensions to ANS
PL/I .

Program Elements

• The IBM 48-character set* is not supported.

• Blanks are not permitted to appear within compound operators*
such as <=, >=, ~=, ~<, ~>, ||, ->, and **.

• Multiple label prefixes are not permitted on any statement.

• A DECLARE statement may not have a label prefix.

• A label prefix is permitted to have only one subscript.

• The use of subscripted label prefixes on PROCEDURE and FORMAT
statements is not supported.

• The use of a label prefix on the THEN or ELSE clause of an IF
statement is not supported.

• Condition prefixes are not supported.

Data Elements

• Binary constants are not supported.

• Replication factors are not supported.

• Sterling constants* are not supported.

April 1980

A P P E N D I X F I D R 4 0 3 1

• The use of the default-suppressing character P or the
explicit-scale-factor character F in arithmetic constants is not
supported.

• The use of a *-length string returns description in a RETURNS
attribute or RETURNS option of a PROCEDURE statement is not
supported.

• The use of functions which return array or structure values is
not supported.

• Array bounds and string length specifiers for variables which
are declared STATIC, or are members of a STATIC structure, must
be integer constants.

• Array bounds and string length specifiers for variables which
are parameters, or are members of a parameter structure, must be
asterisks or integer constants.

Program Structure

• The OPTIONS option of the BEGIN statement is not supported.

• Multiple closure is not supported. Any closure label on an END
statement must match the label prefix of the corresponding
PROCEDURE, BEGIN, or DO statement.

• The following options of the PROCEDURE and ENTRY statements are
not supported:

ORDER*, IRREDUCIBLE*, RECURSIVE*, REDUCIBLE*, REORDER*

• The following options of the OPTIONS option of the PROCEDURE and
ENTRY statements are not supported:

COBOL*, FORTRAN*, NOMAP*, NOMAPIN*, NOMAPOUT*, REENTRANT*, TASK*

Declarations and Attributes

• The following attributes are not supported:

AREA, BACKWARDS*, BUFFERED*, COMPLEX, CONDITION, CONNECTED*,
CONTROLLED, EVENT*, EXCLUSIVE*, FORMAT, GENERIC, IRREDUCIBLE*,
LIKE, LOCAL, OFFSET, POSITION, REDUCIBLE*, TASK*, TRANSIENT*,
UNBUFFERED*

• The following attributes are supported, but are not keywords in
the subset language:

CONSTANT, DIMENSION, MEMBER, NONVARYING, PRECISION, PARAMETER,
REAL, STRUCTURE, UNALIGNED

REV. 0

IDR4031 PL/I and PL/I Subset G

• The INITIAL attribute may be applied only to variables whose
storage class is STATIC. Variables whose storage class is
AUTOMATIC must be initialized via assignment statements. The
INITIAL attr ibute may contain only str ing or ari thmetic
constants, or the NULL built-in function as initial values. The
CALL option* of the INITIAL attribute is not supported.

• A nonzero scale factor may be specified only for a FIXED DECIMAL
variable, and a negative scale factor may not be specified.

• BIT VARYING is not supported.

• iSUB defining is not supported.

• The allowable forms of pictures are restricted to a subset of
the fixed-point decimal pictures. Repetit ion factors (e.g.,
PICTURE '(8)9') are not permitted. Sterling picture data is not
supported.

• The following PICTURE characters are not supported:

A, E, G*, H*, I, K, M*, P*, R, T, X, Y, 6*, 7*, 8*

• All names used in a program must be explicitly declared, either
in a DECLARE statement, or else by use of the name as a label
prefix or built-in function.

• The arithmetic default attributes are always FIXED BINARY,
rather than FIXED DECIMAL or FLOAT DECIMAL according to the
IJKLMN rule*. In particular, FIXED implies FIXED BINARY, so
that FIXED(8,3) must be written as FIXED DECIMAL(8,3).

• Subscripted labels cannot be declared in a DECLARE statement.
(In IBM PL/I, they must be*.)

• The ENTRY declaration for an EXTERNAL procedure may not be
omitted*, as contextual declaration of an EXTERNAL procedure by
its appearaance in a CALL statement is not supported.

• The parameter descriptor list in an ENTRY attribute may not be
omitted. This feature is sometimes used to suppress the
conversion of arguments which do not agree in type or shape with
the corresponding parameters.

• The ALIGNED attribute may be specified only for CHARACTER and
BIT variables. It may not be specified for a structure.

April 1980

A P P E N D I X F I D R 4 0 3 1

• The i n te rp re ta t i on o f t he ENVIRONMENT a t t r i bu te i s
implementation-defined, and subject to variation. The following
options of the ENVIRONMENT attribute are not supported:

F*, FB*, FS*, FBS*, V*, VB*, VBS*, D*, DB*, U*, RECSIZEQ*,
BLKSIZEO*, BUFFERS ()*, BUFND()*, BUFNI()*, BUFSPQ*,
CONSECUTIVE*, INDEXED*, REGIONAL(1)*, REGIONAL(2)*,
REGI0NAL(3)*, TP(M)*, TP(R)*, LEAVE*, REREAD*, SIS*, SKIP*,
BKWD*, REUSE*, TOTAL*, CTLASA*, CTL360*, COBOL*, INDEXAREAO*,
NOWRITE*, ADDBUFF*, GENKEY*, NCP()*, TRKOFL*, SCALARVARYING*,
KEYLENGTHO*, KEYLOCO*, ASCII*, BUFOFF()*, PASSWORD()*

• T h e i n t e r p r e t a t i o n o f t h e O P T I O N S a t t r i b u t e i s
implementation-defined, and subject to variation. The following
options of the OPTIONS attribute are not supported.

ASSEMBLER*, COBOL*, FORTRAN*, INTER*, NOMAP*, NOMAPIN*,
NQMAPOUT*, RETCODE*

• A FILE CONSTANT may not be dimensioned.

• The DEFAULT statement is not supported. Note that the VALUE and
DESCRIPTORS options* of the DEFAULT statement are not included
in ANS PL/I.

Expressions, Conversions, and Assignment

• Expressions which produce aggregate values are not supported.
All operators and function references must yield scalar values.

• Aggregate promotion is not supported, except for one case. The
only allowed form of aggregate promotion is an assignment
statement of the form "<array reference> = <scalar expression)*",
with the restriction that the <array reference> must denote
connected storage. Aggregate assignments are otherwise
restricted to the form "<aggregate reference 1> = <aggregate
reference 2>", where both references must denote connected
storage and possess identical descriptions as to type and shape.
Note that the rules for the promotion of one aggregate type to
another differ between IBM PL/I and ANS PL/I*.

• Implicit conversions between arithmetic or pictured data,
bit-string data, and character-string data is not supported.

• The multiple target form of the assignment is not supported.

• BY NAME assignment is not supported.

• Overlapping string assignment is restricted such that, if the
source and target strings overlap, the target string must begin
to the left of the source string, and data movement must be from
right to left.

REV. 0

IDR4031 PL/I and PL/I Subset G

Built-in Functions and Pseudo-variables

• The following built-in functions are not supported:

ADD, AFTER, ALL*, ALLOCATION, ANY*, BEFORE, COMPILETIME*,
COMPLETION*, COMPLEX, CONJG, COUNT*, COUNTER*, CURRENTSTORAGE*,
DATAFIELD*, DECAT, DOT, EMPTY, ERF, ERFC, EVERY, HIGH, IMAG,
LOW, MULTIPLY, NULLO*, OFFSET, ONCHAR, ONCOUNT*, ONFIELD,
ONSOURCE, PARMSET*, PLIRETV*, POINTER, POLY*, PRECISION,
PRIORITY*, PROD, REAL, REPEAT*, REVERSE, SAMEKEY*, SOME,
STATUS*, STORAGE*, SUBTRACT, SUM

• The following pseudo-variables are not supported:

COMPLEX*, IMAG, ONCHAR, ONSOURCE, REAL

• Pseudo-variables may appear only on the left-hand-side of an
assignment statement.

• The UNSPEC built-in function requires that the argument be a
reference. In IBM PL/I, the argument may be any expression*.

• The MAX and MIN built-in functions must have exactly two
arguments.

• The FIXED and FLOAT built-in functions require the second
argument denoting the precision of the result.

• Various built-in functions have restrictions on their arguments
in order to prevent the creation of unsupported data types.

Storage Control

• The ALLOCATE and FREE statements may allocate or free only one
item.

• The SET option is required in the ALLOCATE statement, since
CONTROLLED storage is not supported.

• The IN option of the ALLOCATE statement is not supported.

Program Control

• The comma-list form of the DO statement is not supported.

• The UNTIL clause* of the DO statement is not supported.

• The following statements are not supported:

EXIT*, HALT*, LEAVE*, SELECT*

April 1980

A P P E N D I X F I D R 4 0 3 1

Conditions and Exception Control

• The following conditions are not supported:

Programmer-named conditions, AREA, ATTENTION*, CHECK*,
CONVERSION, FINISH, NAME, PENDING*, RECORD, SIZE, STORAGE,
STRINGRANGE, STRINGSIZE, SUBSCRIPTRANGE, TRANSMIT

• Condition prefixes are not supported.

• An ON or REVERT statement may specify only one condition.

• A RETURN statement may not be used within an on-unit.

• The SNAP and SYSTEM options of the ON statement are not
supported.

Functions and Procedures

• A function or procedure reference may have only one argument
l i s t .

• A reference to a function with no arguments returns an ENTRY
value. An empty argument list is required to cause invocation
of a parameterless function. In IBM PL/I, a reference to a
function with no arguments will cause the implicit invocation of
the function if the context does not expect an ENTRY value*.

Input/Output

• The following file attributes are not supported:

BACKWARDS*, BUFFERED*, EXCLUSIVE*, TRANSIENT*, UNBUFFERED*

• The use of the ENVIRONMENT file attribute in Prime PL/I Subset G
i s n o t g e n e r a l l y c o m p a t i b l e w i t h i t s u s e i n o t h e r
implementations.

• The following I/O statements are not supported:

DISPLAY*, LOCATE, UNLOCK*

• An OPEN or CLOSE statement may specify only one file.

• The TAB option of the OPEN statement is not supported.

• The ENVIRONMENT, LEAVE*, REREAD*, and REWIND* options of the
CLOSE statement are not supported.

• The use of the TITLE option is generally not compatible with its
use in other implementations.

REV. 0

IDR4031 PL/I and PL/I Subset G

• GET and PUT statements may contain only one I/O list, and at
most one format list.

• The DATA option of the GET and PUT statements is not supported.
Consequently, data-directed I/O is not supported.

• The COPY option of the GET statement is not supported.

The SNAP*, FLOW*, and ALL* options of the PUT statement are not
supported.

• A LINE option may not be specified as part of a PAGE option*.

• The INTO and FROM options of the READ, WRITE, REWRITE, and
DELETE statments may not reference bit-aligned items.

• The FROM option is required in the REWRITE statement.

• The IGNORE option of the READ statement is not supported.

• The EVENT option* of the READ and WRITE statements is not
supported.

• The use of expressions and variable references in format lists
is not supported.

• The specification of the external precision in E and F format
items by means of a third parameter is not supported.

• The C format item is not supported.

Preprocessor Facilities

• The preprocessor facilities* of IBM PL/I are not supported.
This includes the following statements:

%ACTIVATE*, %ASSIGN*, %DEACTIVATE*, %DECLARE*, %D0*, %END*,
%GOTO*, %IF*, %N0TE*, %NULL*, %PROCEDURE*, %RETURN*

• The following listing control statements are not supported:

%CONTROL*, %NOPRINT*, %PRINT*, %PAGE*, %SKIP*

April 1980

A P P E N D I X F I D R 4 0 3 1

Mult i tasking Faci l i t ies

• The multitasking facilities* of IBM PL/I are not supported.
This includes the following features:

The DELAY*, EXIT*, and WAIT* statements.

The TASK*, EVENT*, and PRIORITY* options of the CALL statement.

The EVENT option* of the READ and WRITE statements.

The TASK* and EVENT* data attributes.

The COMPLETION*, PRIORITY*, and STATUS* built-in functions and
pseudo-variables.

Diagnostic Facil i t ies

• The diagnostic facilities* of IBM PL/I are not supported. This
includes the following features:

The CHECK condition prefix* and the CHECK condition*.

The CHECK*, FLOW*, NOCHECK*, and NOFLOW* statements.

REV. 0

INDEX

%keyword, see the keyword

321 compiler option 14-9

64V compiler option 14-9

A format 8-11

Abbreviations:
For built-in functions B-l
For compiler options 14-10
For keywords B-l
Use of 12-6

ABS built-in function 10-1

ACOS built-in function 10-2

Addition 7-4

ADDR built-in function 3-12,
10-2

Addressing modes 14-9

Adjustable:
Arrays 3-18
Extents 4-6
Parameters 4-6

Advice on PL1G programming 12-1

Aggregates:
And BIG compiler option 14-9

ALIGNED attribute 3-9, 5- 7

Alignment of data 11-2

ALLOCATE statement 4-3, 9-1

Alternate data descriptions 4-5

Ambiguous references 6-2

ANSI standards 1-1

APPEND files 11-4

Arguments:
And shared storage 4-9
Expressions as 4-6
In general 2-10, 4-6,

6-3, 9-27

In procedure calls 9-6
Matched with parameters 4-7,

5-11
Mismatched with parameters

4-6, 9-6
Passed by-reference 4-6
Passed by-value 4-6
Type-conversion of 9-6

Arithmetic:
Conversion precisions for 8-3
Data 3-1
Expressions 7-3
Operands 7-3
Operators 7-3
Prec is ion 11-1

Array data 3-18

Arrays:
Adjustable 3-18
As parameters 4-7
Assignment to 3-19, 9-2
D e c l a r i n g 3 - 1 8 , 5 - 4 , 5 - 9
Extents of 4-1
I /O of 3-19, 9-19, 9-30
In general 3-18
In i t i a l i za t i on o f 5 -12
Maximum no. of dimensions

3-18
Of labels 3-14, 5-2
Of structures 3-21
Processed as wholes 3-19
Range checking 3-19
Referenc ing 3-19, 4-4 ,

6-1
Shared storage and 4-8
Size limit on internal 11-1
Storage order 3-18
Subscripts of 3-19
Within structures 3-21

ASCII character set E-l, 11-6

ASIN built-in function 10-2

Assignment:
And references 9-2
In list-directed input 9-20
Rules for 9-2
Statements 9-1
To arrays 3-19, 9-2
To bit data 3-9
To bit-string data 9-2

X -

INDEX

To character data 3-8, 9-2
To entry data 3-15
To file data 3-17
To fixed-point data 3-3
To label data 3-12
To picture data 3-6
To pointer data 3-10
To structures 3-20, 9-2
Using PAGENO 9-3
Using STRING 9-3
Using SUBSTR 9-4
Using UNSPEC 9-4

ATAN built-in function 10-2

ATAND built-in function 10-2

ATANH built-in function 10-3

A t t r i bu tes :
ALIGNED 3-9, 5-7
All for data types A-8
AUTOMATIC 5-7
BASED 4-8, 5-8
BINARY 3-2, 3-3, 5-8
B I T 3 - 9 , 5 - 8
BUILTIN 5-8
Changing 2-20
CHARACTER 3-7, 5-9
Check for validity 2-19
Consistency of 5-6
DECIMAL 3-2, 3-3, 5-9
Defaul t 2-19
Default in declarations 5-5
DEFINED 4-8, 5-9
DIMENSION 5-9
DIRECT 2-19, 2-24, 5-10
Dupl ica te 5-5
ENTRY 3-1, 3-14, 5-10
EXTERNAL 4-2, 5-1, 5-11
F ILE 2 -17 , 3 -17 , 5 -11
FIXED 3-2, 5-11
FLOAT 3-3, 5-12
For DECLARE statement 5-7
Impl ied 2-19
In general 2-19, 5-7
In OPEN statement 9-26
Incomplete 9-26
INITIAL 5-12
INPUT 2-19, 2-24, 5-13
INTERNAL 4-2, 5-13
KEYED 2-19, 2-24, 5-13
LABEL 3-12, 5-13
Legal combinations of 9-26

Of files 2-19
OUTPUT 2-19, 2-24, 5-13
PICTURE 3-4, 5-14
POINTER 3-10, 5-14
PRINT 2-19, 11-5, 2-21,

5-14
RECORD 2-19, 5-14, 9-26
Required 2-19
RETURNS 5-15
SEQUENTIAL 2-19, 2-24,

5-15
STATIC 5-15
STREAM 2-19, 5-15, 9-26
UPDATE 2-19, 2-24, 5-15
VARIABLE 3-15, 5-10, 5-16
VARYING 3-8, 5-16

AUTOMATIC attribute 5-7

AUTOMATIC storage class 2-14,
4-1

B format 8-12

Base of arithmetic data 3-1

BASED attribute 4-8, 5-8

BASED storage class 4-3

Based variables 12-1

BEGIN blocks 2-15, 5-2,
9 -12 , 9 -5

BEGIN statement 9-5

BIG compiler option 14-9

BINARY attribute 3-2, 3-3,
5-8

BINARY built-in function 10-3

BINARY compiler option 14-8

Binary notation 2-3

BIT at t r ibute 3-9, 5-8

BIT built-in function 10-3

X -

INDEX

BIT data, see Bit-string

Bi t -s t r ing:
Data 3-9
Expressions 7-7
Operands 7-8
Operators 7-7
Type-conversions 7-8

Blanks:
Blank lines 12-5
For I/O control 11-3
In list-directed I/O 2-22
Required 2-4
Significance of 2-3
Trai l ing 11-3

Blocks:
Activation of 2-12
All types defined A-4
And GO TO statement 9-22
And procedures 2-9
And reference resolution 6-5
BEGIN 2-15, 5-2, 9-12,

9-5
File control 2-17
Inac t i ve 3 -13 , 3 -15
Structure of 2-10

BOOL built-in function 10-3

Boolean values 3-9

Bui l t- in funct ions:
ABS 10-1
ACOS 10-2
ADDR 3-12, 10-2
ASIN 10-2
ATAN 10-2
ATAND 10-2
ATANH 10-3
BINARY 10-3
BIT 10-3
BOOL 10-3
BYTE 10-4, 11-6
CEIL 10-4
CHARACTER 10-4
COLLATE 10-4, 11-1
COPY 10-5
COS 10-5
COSD 10-5
COSH 10-5
DATE 10-5
DECIMAL 10-5

Declar ing 6-4
DIMENSION 10-6
DIVIDE 10-6
EXP 10-6
FIXED 10-6
FLOAT 10-7
FLOOR 10-7
HBOUND 10-7
In general 10-1
INDEX 10-8
LBOUND 10-8
LENGTH 10-9
LINENO 2-21, 10-9
L is ted 10-1
LOG 10-9
LOG10 10-9
LOG2 10-10
MAX 10-10
MIN 10-10
MOD 10-10
NULL 3-12, 10-10, 11-6
ONCODE 2-16, 10-11, 13-1
ONFILE 2-17, 10-11, 13-1
ONKEY 10-11, 13-1
ONLOC 10-11, 13-1
PAGENO 2-21, 10-11
Pointer valued 6-3
Precision of 11-6
RANK 10-11, 11-6
Referencing 6-4
ROUND 10-12
SIGN 10-12
SIN 10-12
SIND 10-12
SINH 10-12
SQRT 10-12
STRING 10-12
SUBSTR 10-13, 12-2
TAN 10-13
TAND 10-13
TANH 10-13
TIME 10-13
TRANSLATE 10-13
TRUNC 10-14
UNSPEC 10-14
VALID 10-14
VERIFY 10-15

BUILTIN attribute 5-8

By-reference, passing 4-6

X -

INDEX

By-value, passing 4-6

BYTE built-in function 10-4,
11-6

CALL statement 9-6

Cal ls :
In general 2-11
To procedures 5-10, 9-27

Case conversion 14-5

Case statement (simulated)
3 -14 , 5 -2

CEIL built-in function 10-4

Changing attributes 2-20

CHARACTER attribute 3-7, 5-9

CHARACTER built-in function
10-4

CHARACTER data 3-7, C-7

Character set, ASCII E-l,
11-6

CHARACTER VARYING data 3-7,
C-8

Character-string, length of 3-7

CLOSE statement 2-20, 9-6

COL format 9-14

COLLATE built-in function 10-4,
11-1

Comments:
In general 2-4
Run-on 2-4, 12-2

Comparison:
Of bit-str ings 3-9

Comparisons:
Of character strings 3-8
Of entry data 3-15
Re la t iona l 7 -7

Compiler options:
321 14-9
64V 14-9
Abbreviations for 14-10
BIG 14-9
BINARY 14-8
DEBUG 14-9
EXPLIST 14-6
In general 14-3
INPUT 14-5
LCASE 14-5
LISTING 14-6
NESTING 14-7
OFFSET 14-7
OPTIMIZE 14-10
PRODUCTION 14-10
RANGE 12-2, 14-10
SILENT 14-7
SOURCE 14-5
STATISTICS 14-7
Table of 14-4, 14-11
UPCASE 14-5
XREF 14-6

Compiler:
End-of-compilation message

14-2
Error messages 14-1
In general 14-1
Invoking 14-1
Options, see Compiler options
Severity code 14-2

Compound statements 2-6

Concatenation expressions 7-8

Concatenation operand 7-8

Concordance 14-6

Condition handler 1-9, 13-1,
2-15, 9-24

Conditions:
And condition handler 13-1
And ON statement 9-23
ENDFILE 9-24
ENDPAGE 2-16, 2-21, 9-25
ERROR 2-16, 9-25
In general 1-9, 2-16
KEY 9-25
SIGNAL statement for 9-35
Signa l l ing 9 -24

INDEX

Constants:
All types defined A-7
Bit 3-10
Character string 3-8
File 2-17, 3-17
Fixed-point 3-3
Floating point 3-4
In general 2-2
Label 3-12

Control block, file 2-17

Control characters, restricted
2-21

Control formats for I/O 2-23

Conventions 1-10

COPY built-in function 10-5

COS built-in function 10-5

COSD built-in function 10-5

COSH built-in function 10-5

Creation of files 2-24

Cross reference 14-6

DAM files 11-4

Data formats 9-14

Data types:
And prefix operators 7-4
B I T 3 - 9 , C - 9
CHARACTER 3-7, C-7
CHARACTER VARYING 3-7, C-8
Conversion of 7-3
Converting 8-1
Efficiencies of using 12-1
ENTRY 3-14, C-l2
FILE 3-17, C-13
FIXED BINARY 3-1, C-2
FIXED DECIMAL 3-1, C-3
FLOAT BINARY 3-1, C-4
FLOAT DECIMAL 3-1, C-5
For operands 7-3
For relational operands 7-7
Formats for C-l
In general 2-13, 3-1
LABEL 3-12, C- l l

Mismatched in expressions 7-3
Of constants 3-1
Of expression results 3-1
PICTURE 3-4, 8-14, C-6
POINTER 3-10, C-10
Size of 11-2
Valid, listed 5-6

Data:
Alignment of 11-2
Arithmetic 3-1
Arrays 3-18
Arrays of structures 3-20
Automatic 2-14, 4-1
Base of arithmetic 3-1
Based 4-3
Constant size 12-1
Defined (storage class) 4-5
Fixed-point 3-2
Floating-point 3-3
Formats for 9-14, C-l
In general 2-13, 3-1
Operands 7-3
Packed decimal 3-2
Parameters 4-6
Precision of arithmetic 3-1
Relational operands 7-7
Rounding arithmetic 3-3
Scale of arithmetic 3-1
Stat ic 2-14, 4-2
Structures 3-19
Structures of arrays 3-20
Type-conversion of 8-1
Undefined 6-5
Varying size 12-1

Database Management System (DBMS)
1-7

DATE built-in function 10-5

DBMS 1-7

DEBUG compiler option 14-9

Debugger 1-9, 14-9

DECIMAL attribute 3-2, 3-3,
5-9

DECIMAL built-in function 10-5

X -

INDEX

Declarations:
DECLARE statement 9-7
Defaults for 5-5
Defaults for invalid 5-6
Duplicate attributes in 5-5
ENTRY without VARIABLE 5-7
Errors in 5-6
Factored 5-5
FILE without VARIABLE 5-7
In general 2-8, 5-1, 5-3
Incomplete 5-6
Incons is ten t 5 -6
I n v a l i d 5 - 6
Mu l t i p l e 5 -1
Of arrays 3-18, 5-4, 5-9
Of arrays of structures 3-21
Of bit data 3-9
Of built-in functions 6-4
Of character data 3-7
Of defined data 4-5
Of entry data 3-14
Of external procedures 3-15
Of file data 3-17
Of fixed-point data 3-2
Of floating-point data 3-3
Of label data 3-12, 3-14
Of labels 2-8, 5-1, 5-3
Of parameters 9-27
Of picture data 3-5
Of pointer data 3-10
Of procedure names 5-3
Of static data 2-14
Of structures 3-20, 5-4
Of structures of arrays 3-21
Of variables 5-3
Recommended forms 5-3
Redeclarat ions 6-2
Redundant 5-1
Scope of 5-1

DECLARE statement 2-19,
5 - 3 , 5 - 7 , 9 - 7

2-1

Defaul ts:
A t t r i bu te 2 -19
For binary data 5-8
For decimal data 5-9
For declarations 5-5
For EXTERNAL attribute 5-11
For file names 11-3
For fi le-creat ion 2-24
For FIXED attribute 5-11,

5-12
For FLOAT attribute 5-12

For GET statement 9-18
For impicit OPEN 2-19
For invalid declarations 5-6
For line size 2-19
For LINESIZE option 11-1
For opening files 11-5
For opening nonexistent files

2-24
For PAGESIZE option 11-1
For PUT statement 9-29
For STATIC attribute 5-13
For STATIC storage scope 4-2
For TITLE option 2-19
On-unit 1-10
Storage class 4-1
System on-unit 1-10

DEFINED attribute 4-8, 5-9

DEFINED storage class 4-5

DELETE statement 2-19, 2-23,
9-7

Deletion of files 2-24

DEVICE files 11-4

Device names 11-4

DIMENSION attribute 5-9

DIMENSION built-in function
10-6

Dimensions of an array 3-18

DIRECT attribute 2-19, 2-24,
5-10

DIVIDE built-in function 10-6

D iv i s i on 7 -5

DO REPEAT statement 9-9

DO statement (iterative) 9-10

DO statement (simple) 9-7

DO WHILE statement 9-8

X -

INDEX

Duplicate attributes 5-5

E format 8-10

EDIT option 9-21, 9-32

Edit-directed I/O:
Efficiency of 12-1
In general 2-20, 2-23

Edit-directed input 9-21

Edit-directed output 9-32

Editor, and PL1G 1-7

Efficiency:
And choice of data type 12-1
And edit-directed I/O 12-1
And keys 12-1
And list-directed I/O 12-1
And record I/O 12-1
In choice of data type 3-2
Of binary data 12-1
Of decimal data 12-1
With arrays 12-1
With based variables 12-1
With structures 12-1

ELSE statement 9-22

END statement 9-11

End-of-compilation message 14-2

ENDFILE condition 9-24

ENDPAGE condition 2-16, 2-21,
9-25

ENTRY attribute 3-1, 3-14,
5-10

ENTRY data 3-14, C-12

Entry point references 6-4

Equality of data 7-7

ERROR condition 2-16, 9-25

Errors:
%REPLACE of keywords 12-2
And on-units 9-24

Compiler error messages 14-2
Compiler-detected 14-1
Handling of 2-15
In declarations 5-6
In general 12-2
In type-conversion 8-4
Inconsistent procedure

declarations 12-2
Invalid pointers 12-2
Invalid recursive invocations

12-3
Missing semicolons 12-2
Null pointers 12-2
Overflow values 12-3
RANGE compiler option 12-2
Run-on comments 12-1
Run-on string constants 12-2
Runtime, see The Prime User's

Guide
SUBSTR built-in function 12-2
Undefined variables 12-3

ESCAPE editor command 1-7

Evaluation:
Altering order of 7-2
And parentheses 7-2
Due to assignment 9-2
Of expressions 7-1
Of format-list 9-19
Of IF expressions 9-22
Of input-list 9-19
Order of 7-1, 9-3, 9-6
Part ial 7-2

Exception handling 2-15

Exclusions 1-5

Executing programs, see The Prime
User's Guide

Execution, order of 2-7

EXP built-in function 10-6

Expanded listing 14-6

EXPLIST compiler option 14-6

Exponent 3-3

X -

INDEX

Exponent iat ion 7-5

Exponents 11-5

Expressions:
Altering evaluation of 7-2
Arithmetic 7-3
Bit-str ing 7-7
Concatenation 7-8
Data types from 3-1
Defined 7-1
Evaluated on assignment 9-2
Evaluation of 7-1
Expression operators 7-1
For extents 4-1
In general 7-1
In IF statements 9-22
In output lists 9-30
Parentheses in 7-2
Partial evaluation of 7-2
Precision resulting from 7-3
R e l a t i o n a l 7 - 6 , 7 - 7
Subscr ipt 6-1

Extensions 1-4

Extents:
Adjustable (*) parameter 4-6
Defined 4-1
For automatic data 4-1
For static data 4-2
Of arrays 4-1
Of based variables 4-5
Of defined data 4-6
Of parameters 4-6
Of variables 4-1
Parameter 4-7

EXTERNAL attribute 4-2, 5-1,
5-11

F i l e s :
All types defined A-l2
And TITLE option 11-3
APPEND 11-4
Attr ibutes of 2-19
Closing , 2-20, 9-6
Creation of 2-24
DAM 1.1-4
Deletion of 2-24
Description formats for 11-4
DEVICE 11-4
DIRECT 5-10, 11-5
File attributes, see Attributes
File constants 2-17
File control blocks 2-17,

3-17
FILE option 2-18
File variable 2-17
In general 2-17
INPUT 5-13
KEYED 5-13
Line size of 2-20
Names as parameters 2-17
Names for 11-3
Opening 2-18, 11-3, 9-26
Opening nonexistent 2-24
Operations on record 2-24
OUTPUT 5-13
Posit ion of 2-23, 2-24,

2-24
PRINT 5-14
Properties of 2-18
RECORD 2-17, 2-23, 5-14
Replacement of 2-24
Restriction on accessing 11-6
SAM 11-4
SEQUENTIAL 5-15
STREAM 2-17, 11-3, 2-20,

5-15
UPDATE 5-15

F format 8-9

Factored declarations 5-5

FILE attr ibute 2-17, 3-17,
5-11

FILE data 3-17, C-13

FILE option 2-18, 9-26

FIXED attribute 3-2, 5-11

FIXED BINARY data 3-1, C-2

FIXED built-in function 10-6

FIXED DECIMAL data 3-1, C-3

Fixed-point constants 3-3

Fixed-point data 3-2

X -

INDEX

FLOAT attribute 3-3, 5-12

FLOAT BINARY data 3-1, C-4

FLOAT built-in function 10-7

FLOAT DECIMAL data 3-1, C-5

Floating point data 3-3

FLOOR built-in function 10-7

Format labels 5-2

Format lists:
In general 9-13
Items for 9-13
Nested 9-13

Format names 5-2

FORMAT statement 9-12

Formats for data types C-l

Formats:
A 8-11
B 8-12
COL 9-14
E 8-10
F 8-9
In general 9-12
LINE 9-15
P 8-13
PAGE 9-16
R 9-14
SKIP 9-15
TAB 9-17
X 9-17

Formatting programs 12-4

FORMS 1-8

Forms Management System (FORMS)
1-8

Fract ions 3-2

FREE statement 4-5, 9-17

FROM option 2-24, 11-3

Fully qualified references 6-2

Function references 6-3

Functions:
BUILTIN 5-7, 5-8
Pointer valued 6-3
Referencing 6-3
Referencing built-in 6-4
Return conventions for D-l

GET statement 2-19, 11-2,
11 -3 , 2 -20 , 9 -18

Glossary A- l

GO TO statement 9-21

HBOUND built-in function 10-7

Hexadecimal notation 2-3

Identifiers, see Names

IF statement 2-6, 9-22

Implementation-defined features
1-5, 11-1

Implied attributes 2-19

Implied-DO:
In input-lists 9-19
In output-lists 9-29

INCLUDE statement 2-4, 11-5

INDEX built-in function 10-8

Inequality of data 7-7

Infix operators 7-1, 7-8

INITIAL attribute 5-12

In i t i a l i za t ion :
Attribute for 5-12
In general 2-14, 5-12
Of arrays 5-12
Of static storage 4-2

INPUT attribute 2-19, 2-24,
5-13

X -

INDEX

INPUT compiler option 14-5

I n p u t - l i s t s :
Implied-DO in 9-19
In general 9-18

Input/Output:
A format 8-11
And devices 11-4
And type-conversion 8-8
B format 8-12
CLOSE statement 9-6
COL format 9-14
Control formats 2-23
Data formats 9-14
DELETE statement 9-7
E format 8-10
Ed i t -d i rec ted 2 -20 , 2 -23
Edit-directed input 9-21
Edit-directed output 9-32
Efficiency of 12-1
ENDFILE condition 9-24
ENDPAGE condition 9-25
F format 8-9
Format lists 9-13
FORMAT statement 9-12
Formats for 9-13
GET statement 9-18
Implied-DO and 9-19, 9-31
In general 2-16
Input l ists 9-18
Input-l ine length 11-3
KEY condition 9-25
LINE format 9-15
Line size during 2-20
L i s t - d i r ec ted 2 -20 , 2 -22
List-directed input 9-20
List-directed output 9-31
Of arrays 3-19, 9-19,

9-30
Of structures 3-20, 9-19,

9-30
Of variable-length lines 11-3
On TTY 11-2
OPEN statement 9-26
Output-lists . 9-29
P format 8-13
PAGE format 9-16
PUT statement 9-29
R format 9-14
READ statement 9-33
Record 2-23, 12-1
REWRITE statement 9-35
SKIP format -9^16

Stream 2-20
TAB format 9-17
Transmitted string size 11-2
WRITE statement 9-36
X format 9-17

Insertion of text 2-4

In tegers 3-2

Interfacing other languages 1-6

INTERNAL attribute 4-2, 5-13

INTO option 2-24, 11-3

Invoking procedures 2-11

KEY condition 9-25

KEYED attribute 2-19, 2-24,
5-13

Keys:
In record files 2-24
Size-restr ict ion on 11-6

KEYTO option 11-6

Keywords:
In general 2-2
Reserved 2-2

LABEL attribute 3-12, 5-13

LABEL data 3-12, C-ll

Label prefixes, see Labels

Labels:
Arrays of 3-14, 5-2
Declaration of 5-3
Dec la r i ng 2 -8 , 5 -1
Effect of overuse 2-7
For BEGIN blocks 5-2
For FORMAT statement 5-2
Statement 5-2
Subscripted 5-2
Subscripts of 3-14

LBOUND built-in function 10-8

X - 10

INDEX

LCASE compiler option 14-5

Lef t - to-r ight equivalent 4-8

LENGTH built-in function 10-9

Length:
Mismatch during I/O 2-23
Of a key 11-6
Of bit data 3-9
Of character data 3-7
Of concatenated strings 7-8
Of input lines 11-3
Of names 11-2
Of string constant 11-1
Of string value 11-1

Level numbers in structures
3-19, 5-4

Line boundaries, marking 2-22

LINE format 9-15

Line numbers 2-21

Line size during I/O 2-20

LINENO built-in function 2-21,
10-9

LINESIZE option 2-19, 11-1

Linking programs, see Loading
programs

LIST option 9-20, 9-31

LIST statement 11-5

List-directed I/O:
Efficiency of 12-1
In general 2-20, 2-22

List-directed input 9-20

List-directed output 9-31

LISTING compiler option 14-6

Loading programs, see The Prime
User's Guide

LOG built-in function 10-9

LOG10 built-in function 10-9

L0G2 built-in function 10-10

Lower-to-upper-case 14-5

MAIN 9-28

Major structures 3-19

Mantissa 3-3

Marking line boundaries 2-22

Marking page boundaries 2-22

Matching arguments with
parameters 4-7

MAX built-in function 10-10

Members of structures 3-19

Memory formats C-l

MIDAS 1-8

MIN built-in function 10-10

Mismatch of arguments with
parameters 4-6

MOD built-in function 10-10

Module, program 2-1

Multiple declarations 5-1

Multiple Index Data Access System
(MIDAS) 1-8

Mul t ip le qual ificat ion 6-3

Mu l t i p l i ca t i o n 7 -4

Names:
Declared 2-2
External 11-2
F i l e 2 - 1 7
For devices 11-4
For files 11-3
In general 2-1

X - 11

INDEX

Keyword 2-2
Length of 11-2
Of structure components 3-20
Qual ified 3-20
Reserved 2-2
Scope of 2-10
Suggestions for selecting

12-6
Syntax for 2-1

Nested format lists 9-13

NESTING compiler option 14-7

Nesting level 14-7

NOLIST statement 11-5

Nonexistent files 2-24

NULL built-in function 3-12,
10-10, 11-6

Null pointer 3-11

Null statement 9-23

Nul l s t r ing 3-7 , 3-9

Object code 14-9

Object file 14-8

Octal notation 2-3

OFFSET compiler option 14-7

Offset map 14-7

ON statement 2-15, 2-6,
9-23

On-units:
And GO TO statement 9-24
And ON statement 9-23
And RETURN statement 9-34
In general 1-9, 13-1,

2-16, 9-23
SIGNAL statement for 9-35

ONCODE built-in function 2-16,
10-11, 13-1

ONFILE built-in function 2-17,
10-11, 13-1

ONKEY built-in function 10-11,
13-1

ONLOC built-in function 10-11,
13-1

OPEN statement 2-18, 11-3,
2-19, 9-26

Operands:
Ar i thmet ic 7 -3
B i t - s t r i n g 7 - 8
Concatenation 7-8
Data types of 7-3
Rela t iona l 7-7

Operators:
All types defined A-17
Ar i thmet ic 7 -3
B i t - s t r i n g 7 - 7
In expressions 7-1
In general 2-3, 7-1
I n fi x 7 - 1 , 7 - 8
P r e fi x 7 - 1 7-4
Prior i ty of 7-1
Re la t iona l 7 -6
Results of 7-3

Optimization 14-10

OPTIMIZE compiler option 14-10

OPTIONS (MAIN) 9-28

Options:
Compiler, see Compiler options
EDIT 9-21, 9-32
FILE 2-18, 9-26
FROM 2-24, 11-3
INTO 2-24, 11-3
KEYTO 11-6
LINESIZE 2-19, 11-1
LIST 9-20, 9-31
PAGE 2-21
PAGESIZE 2-19, 11-1
RECURSIVE 2-12, 9-27
RETURNS 9-27
SKIP 2-20
TITLE 2-17 , 11-3 , 2 -18 ,

9-26

X - 12

INDEX

Order of evaluation 7-1, 9-3,
9-6

Order of execution 2-7

Out-of-bounds values 14-10

OUTPUT attribute 2-19, 2-24,
5-13

Output-lists:
Implied-DO in 9-29, 9-31
In general 9-29

Overlays, string 4-8
Overview of PL1G 2-1

P format 8-13

Packed decimal data 3-2

Page boundaries, marking 2-22

PAGE format 9-16

Page numbers 2-21

PAGE option 2-21

PAGENO built-in function 2-21,
10-11

PAGENO pseudo-variable 9-3

PAGESIZE option 2-19, 11-1

PARAMETER storage class 4-6

Parameters:
And BEGIN blocks 2-15
And shared storage 4-9
Arrays as 4-7
Associated by-reference 4-6
Associated by-value 4-6
Extents of 4-6
File names as 2-17
In general 2-10, 4-6
Matched with arguments 4-7,

5-11
Mismatched with arguments 4-6
Parameter lists 9-27
Structures as 4-7, 5-11
With adjustable extents 4-6

With constant extents 4-7
With ENTRY attribute 5-11

Parentheses in expressions 7-2

Parity bit E-3

Partially qualified references
6-2

Passing by-reference 4-6

Passing by-value 4-6

PICTURE attribute 3-4, 5-14

PICTURE characters 3-5

PICTURE data 3-4, 8-14, C-6

PL/I Subset G, defined 1-1

PL/I, defined 1-1

PL1G:
And other languages 1-6
And Prime utilities 1-7
And the condition handler 1-9
And the debugger 1-9
And the editor 1-7
Defined 1-1
Exclusions 1-5
Extensions 1-4
Overview of 2-1
Restrictions on 1-6

POINTER attribute 3-10, 5-14

POINTER data 3-10, C-10

Pointer qualified references
6-3

Pointers:
All types defined A-18
And based data 4-3
Explicit qualification of 4-5
Implicit qualification of 4-4
Invalid 12-2
Null 12-2
Qualification of 4-3
Qualified 12-6
Size control of 11-5

X - 13

INDEX

Precision of arithmetic constants
3-3

Precision:
After addition 7-4
After division 7-5
After exponentiation 7-5
After multiplication 7-4
After subtraction 7-4
After type-conversion 8-3
And expression evaluation 7-4
And prefix operators 7-4
Arithmetic 11-1
Defined A-18
Fixed binary 11-1
Fixed decimal 11-1
Float binary 11-1
Float decimal 11-1
In expressions 7-3
Mismatch in expressions 7-3
Of arguments 4-7
of arithmetic data 3-1
Of arithmetic data 4-7
Of binary data 5-8
Of built-in functions 11-6
Of decimal data 5-9
Of FIXED data 5-12
Of fixed-point results 7-3
Of FLOAT data 5-12
Of floatint-point results 7-4
Of parameters 4-7
Rules for arithmetic 7-3

Prefix operators 7-1

PRINT attribute 2-19, 11-5,
2-21, 5-14

Priority of operators 7-1

Procedure references 6-3

PROCEDURE statement 5-11,
9-27

Procedures:
All types defined A-18
And blocks 2-9
Calls to 9-27
Entry points of 5-10
External 2-9
In general 2-9
Inconsistent declaration of

12-2

Internal 2-9, 12-3
Invoking 2-11
Nested 2-9
PROCEDURE statement 5-11,

9-27
Programming style for 12-3
Recommendations for 12-3
Recursive 2-12, 9-28,

A-20
References to 9-6
Scope of 2-10

PRODUCTION compiler option
14-10

Program execution, see The Prime
User's Guide

Program organization 12-3

Programming style 12-3

Programs, formatting style for
12-4

Programs:
Defined 2-1
Execution order 2-7
From other systems 2-1
Modules in 2-1

Pseudo-variables:
PAGENO 2-21, 9-3
STRING 9-3
SUBSTR 9-4
UNSPEC 9-4

Punctuation 2-3

PUT statement 2-19, 11-2,
2-20, 9-29

Qualification, multiple 6-3

Qualified references 6-2

Quotes 2-3, 3-8

R format 9-14

Range checking 14-10

X - 14

INDEX

Range checking in arrays 3-19

RANGE compiler option 14-10

RANK built-in function 10-11,
11-6

READ statement 2-19, 11-3,
2-23, 9-33

RECORD attribute 2-19, 5-14

Record file 2-17

Record I/O 2-23

Record size 11-4

Recursion:
And entry data 3-16
And static variables 4-2
In general 2-12
In procedures 9-28
Invalid recursive invocations

12-3

RECURSIVE option 2-12, 9-27

Redundant declarations 5-1

References:
Ambiguous 6-2, 6-5
And assignments 9-2
And redeclarations 6-2
Fully qualified 6-2
Function 6-3
In general 2-8, 6-1
Inval id 6-5
Partially qualified 6-2
Pointer qualified 6-3
Pointer-qualified 4-3
Qualified 6-2
Resolving 6-1, 6-5
Simple 6-1, 6-5
Structure qualified 6-2
Subscripted 6-1, 6-2, 6-5
To arrays 3-19, 6-1
To arrays in structures 3-21
To based data 4-3
To based variables 6-3
To built-in functions 6-4,

A-6
To entry points 6-4
To functions 6-3

To procedures 6-3, 9-6
To shared storage 4-9
To structures 3-20, 12-6,

6-2, 6-5
To structures in arrays 3-21
To undefined data 6-4
To variables 6-4
With pointers 4-3

Relational:
Expressions 7-6, 7-7
Operands 7-7
Operators 7-5

REPLACE statement 2-5, 12-2

Replacement of files 2-24

Replacement of text 2-4

Required attributes 2-19

Required blanks 2-4
Reserved keywords 2-2

Reserved names 2-2

Resolving references 6-5

Restrictions on PL1G programs
1-6

RETURN statement 9-34

RETURNS attribute 3-15, 5-15

RETURNS option 9-27

Returns:
In general 2-11

REVERT statement 9-34

REWRITE statement 2-19, 2-23,
9-35

ROUND built-in function 10-12

Rounding arithmetic data 3-3

Row-major order 3-18

X - 15

INDEX

Running programs, see The Prime
User's Guide

SAM files 11-4

Scale factors A-21, 11-1

Scale of arithmetic data 3-1

Scope:
Of BEGIN statement label 5-2
Of declarations 5-1
Of names 2-10
Of overlapping structures 6-2
Of procedures 2-10
Of static data 4-2
With EXTERNAL attribute 5-11
With FILE attribute 5-11
With INTERNAL attribute 5-13

SEMICO editor command 1-7

Separators 2-3, A-21

SEQUENTIAL attribute 2-19,
2-24, 5-15

SET clause A-l

Severity code 14-2

Sharing storage 4-8

SIGN built-in function 10-12

SIGNAL statement 9-35

Signalling conditions 9-24

SILENT compiler option 14-7

Simple references 6-1, 6-5

Simulated case statement 5-2

SIN built-in function 10-12

SIND built-in function 10-12

SINH built-in function 10-12

SKIP format 9-16

SKIP option 2-20

SOURCE compiler option 14-5

Source file 14-5

Source level debugger 14-9

Source listing 11-5, 14-6

Source text standards 2-1

Source-level debugger 1-9

SQRT built-in function 10-12

Stack frame 2-12, 3-16,
A-22

Stack frame format D-l

Standards 1-1

Statement labels 5-2

Statements:
ALLOCATE 4-3, 9-1
Assignment 9-1
BEGIN 9-5
CALL 9-6
Case (simulated) 3-14
CLOSE 2-20, 9-6
Compound 2-6
DECLARE 2-19, 2-8, 5-3,

5 -7 , 9 -7
DELETE 2-19, 9-7
DO (iterative) 9-10
DO (simple) 9-7
DO REPEAT 9-9
DO WHILE 9-8
ELSE 9-22
END 9-11
FORMAT 9-12
FREE 4-5, 9-17
GET 2 -19 , 11 -2 , 11 -3 ,

2-20, 9-18
GO TO 9-21
I F 2 - 6 , 9 - 2 2
In general 2-5, 9-1
INCLUDE 2-4, 11-5
LIST 11-5
NOLIST 11-5
N u l l 9 - 2 3
ON 2-15, 2 -6 , 9 -23

X - 16

INDEX

OPEN 2-18, 11-3, 2-19,
9-26

Order of execution 2-7
PROCEDURE 5-11, 9-27
PUT 2-19, 11-2 , 2-20,

9-29
READ 2-19, 11-3, 2-23,

9-33
REPLACE 2-5, 12-2
RETURN 9-34
REVERT 9-34
REWRITE 2-19, 2-23, 9-35
SIGNAL 9-35
STOP 2-20, 9-36
THEN 9-22
WRITE 2-19, 11-3, 2-23,

9-36

STATIC attribute 5-15

STATIC storage class 2-14,
4-2

STATISTICS compiler option 14-7

STOP statement 2-20, 9-36

Storage classes:
All types defined A-22
AUTOMATIC 2-14, 4-1
BASED 4-3
DEFINED 4-5
In general 2-14, 4-1
PARAMETER 4-6
STATIC 2-14, 4-2
Val id , l i s ted 5-7

Storage formats C-l

Storage order for arrays 3-18

Storage sharing 4-8

STREAM attribute 2-19, 5-15

Stream files 2-17, 11-3

Stream I/O 2-20

STRING built-in function 10-12

String overlays 4-8

STRING pseudo-variable 9-3

Structure data 3-19

Structures:
Arrays of 3-21
Arrays within 3-21
As parameters 4-7, 5-11
As wholes 3-20
Assignment to 3-20, 9-2
Declaring 3-20, 5-4
Effiency of 12-1
I/O of 3-20, 9-19, 9-30
In general 3-19
Level numbers in 3-19, 5-4
Major 3-19
Members of 3-19
Overlapping 6-2
Referencing 3-20, 12-6,

6-2, 6-5
Shared storage and 4-8
Substructures of 3-19

Style of programming 12-3

Subscripts:
Array 3-19
Expressions as 6-1
In structure references 6-2,

12-6
Label 3-14
Of based data 4-4
Of labels 5-2
Subscripted references 6-1,

6-2, 6-5

SUBSTR built-in function 10-13

SUBSTR pseudo-variable 9-4

Substructures 3-19

Subtraction 7-4

Suppress warning messages 14-7

SYMBOL editor command 1-7

TAB format 9-17

Tab stops 11-5

X - 17

INDEX

Tables:
Arithmetic conversion precision

8-3
Characters as bit-strings

3-11
Compiler options 14-4,

14-11
Of picture data conversions

8-15

TAN built-in function 10-13

TAND built-in function 10-13

TANH built-in function 10-13

Text insertion 2-4

Text replacement 2-4

THEN statement 9-22

TIME built-in function 10-13

TITLE option 2-17, 11-3,
2-18, 9-26

Tokens 2-1

TRANSLATE built-in function
10-13

TRUNC built-in function 10-14

TTY Input/Output 11-2

Type-conversion:
And prefix operators 7-4
Arith to arith 8-2
Arith to bit-string 8-4
Arith to char-string 8-5
Arith-to-char 11-5
Automatic 8-1
Bit-string to arith 8-6
Bit-string to char-string 8-7
Causes of 8-1
Char-string to arith 8-7
Char-string to bit-string 8-8
During I/O 8-8
For arithmetic data 7-3
Format-controlled 8-8
Implici t 8-1
In expressions 7-3
In general 2-14, 8-1

Of arguments 9-6
On assignment 9-2
On output 9-31, 9-32
Picture to arith 8-13
Picture to bit-string 8-13
Picture to char-string 8-14
Re la t iona l 7 -7
To picture data 8-14
With A format 8-11
With B format 8-12
With E format 8-10
With F format 8-9
With P format 8-13

Undefined data 6-5

UNSPEC built-in function 10-14

UNSPEC pseudo-variable 9-4

UPCASE compiler option 14-5

UPDATE attribute 2-19, 2-24,
5-15

Upper-to-lower-case 14-5

VALID built-in function 10-14

VARIABLE attribute 3-15,
5-10, 5-16

Variables:
Automatic 2-14
Based 12-1
Bit 3-9
Character 3-7
Declaring 5-3
Entry 3-14
File 2-17, 3-17, 3-17
Fixed-point 3-2
Floating-point 3-3
In general 2-13
Label 3-12
Pic tu re 3-4
Pointer 3-10
Referencing 6-4
Scalar, defined 3-1
Static 2-14
Undefined 12-3

VARYING attribute 3-8, 5-16

X - 18

INDEX

Varying-length lines 11-3

VERIFY built-in function 10-15

WRITE statement 2-19, 11-3,
2-23, 9-36

X format 9-17

XREF compiler option 14-6

X - 19

	Front Cover
	Title Page
	i
	Copyright
	ii
	Contents
	iii
	iv
	v
	vi
	Part I
	Introduction
	Section 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	Part II
	The PL1G Language
	Section 2
	Overview of PL1G
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	Section 3
	Data and Data Types
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	Section 4
	Storage Classes
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	Section 5
	Declarations and Attributs
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	Section 6
	References
	6-1
	6-2
	6-3
	6-4
	6-5
	Section 7
	Expressions
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	Section 8
	Data Type Conversions
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	Section 9
	Statements
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	Section 10
	Built-in Functions
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	Part III
	PL1G and the Prime System
	Section 11
	Implementation Defined Features
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	Section 12
	Advice on the Use of PL1G
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	Section 13
	PL1G Use of the Condition Mechanism
	13-1
	13-2
	Section 14
	Using the PL1G Compiler
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	Appendices
	Appendix A
	Glossary of PL1G Terms
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	Appendix B
	Abbreviations
	B-1
	Appendix C
	Data Formats
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	Appendix D
	Stack Frame and Function Return Conventions
	D-1
	D-2
	D-3
	Appendix E
	ASCII Character Set
	E-1
	E-2
	E-3
	E-4
	E-5
	Appendix F
	Differences Between Full PL/I and PL/I Subset G
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	Index
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19

